Impact of eugenol on biofilm development in Shigella flexneri 1457: a plant terpenoid based-approach to inhibit food-borne pathogen

IF 2.3 3区 生物学 Q3 MICROBIOLOGY
Wilson Pearl Evangeline, Elumalai Rajalakshmi, Singaravel Mahalakshmi, Vasudevan Ramya, Banik Devkiran, Elangovan Saranya, Mohandass Ramya
{"title":"Impact of eugenol on biofilm development in Shigella flexneri 1457: a plant terpenoid based-approach to inhibit food-borne pathogen","authors":"Wilson Pearl Evangeline,&nbsp;Elumalai Rajalakshmi,&nbsp;Singaravel Mahalakshmi,&nbsp;Vasudevan Ramya,&nbsp;Banik Devkiran,&nbsp;Elangovan Saranya,&nbsp;Mohandass Ramya","doi":"10.1007/s00203-024-04108-y","DOIUrl":null,"url":null,"abstract":"<div><p><i>Shigella flexneri</i> is a gram-negative bacterium responsible for shigellosis and bacterial dysentery. Despite using various synthetic antimicrobial agents and antibiotics, their efficacy is limited, prompting concerns over antibiotic resistance and associated health risks. This study investigated eugenol, a polyphenol with inherent antioxidant and antibacterial properties, as a potential alternative treatment. We aimed to evaluate eugenol’s antibacterial effects and mechanisms of action against <i>S. flexneri</i> and its impact on biofilm formation. We observed significant growth suppression of <i>S. flexneri</i> with eugenol concentrations of 8–10 mM (98.29%). Quantitative analysis using the Crystal Violet assay demonstrated a marked reduction in biofilm formation at 10 mM (97.01 %). Assessment of Cell Viability and morphology via Fluorescence-Activated Cell Sorting and Scanning Electron Microscopy confirmed these findings. Additionally, qPCR analysis revealed the downregulation of key genes responsible for adhesion (<i>yebL</i>), quorum sensing (<i>rcsC</i><i>, </i><i>sdiA</i>), and EPS production (<i>s0482</i>) associated with bacterial growth and biofilm formation. The present study suggests eugenol could offer a promising alternative to conventional antibiotics for treating shigellosis caused by <i>S. flexneri</i>.</p></div>","PeriodicalId":8279,"journal":{"name":"Archives of Microbiology","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Microbiology","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s00203-024-04108-y","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Shigella flexneri is a gram-negative bacterium responsible for shigellosis and bacterial dysentery. Despite using various synthetic antimicrobial agents and antibiotics, their efficacy is limited, prompting concerns over antibiotic resistance and associated health risks. This study investigated eugenol, a polyphenol with inherent antioxidant and antibacterial properties, as a potential alternative treatment. We aimed to evaluate eugenol’s antibacterial effects and mechanisms of action against S. flexneri and its impact on biofilm formation. We observed significant growth suppression of S. flexneri with eugenol concentrations of 8–10 mM (98.29%). Quantitative analysis using the Crystal Violet assay demonstrated a marked reduction in biofilm formation at 10 mM (97.01 %). Assessment of Cell Viability and morphology via Fluorescence-Activated Cell Sorting and Scanning Electron Microscopy confirmed these findings. Additionally, qPCR analysis revealed the downregulation of key genes responsible for adhesion (yebL), quorum sensing (rcsC, sdiA), and EPS production (s0482) associated with bacterial growth and biofilm formation. The present study suggests eugenol could offer a promising alternative to conventional antibiotics for treating shigellosis caused by S. flexneri.

Abstract Image

丁香酚对柔性志贺氏菌 1457 生物膜发展的影响:一种基于植物萜类化合物的食源性病原体抑制方法。
柔性志贺氏菌是一种革兰氏阴性细菌,可引起志贺氏菌病和细菌性痢疾。尽管使用了各种合成抗菌剂和抗生素,但其疗效有限,引发了人们对抗生素耐药性和相关健康风险的担忧。丁香酚是一种具有抗氧化和抗菌特性的多酚,本研究将其作为一种潜在的替代治疗方法。我们的目的是评估丁香酚对柔毛杆菌的抗菌效果、作用机制及其对生物膜形成的影响。我们观察到,丁香酚浓度为 8-10 mM 时,能明显抑制变形杆菌的生长(98.29%)。使用水晶紫检测法进行的定量分析显示,在 10 mM 的浓度下,生物膜的形成明显减少(97.01%)。通过荧光激活细胞分选和扫描电子显微镜评估细胞活力和形态证实了这些发现。此外,qPCR 分析表明,与细菌生长和生物膜形成相关的粘附(yebL)、法定量感应(rcsC、sdiA)和 EPS 产生(s0482)等关键基因出现了下调。本研究表明,丁香酚可作为传统抗生素的替代品,用于治疗由柔性猪链球菌引起的志贺氏杆菌病。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Archives of Microbiology
Archives of Microbiology 生物-微生物学
CiteScore
4.90
自引率
3.60%
发文量
601
审稿时长
3 months
期刊介绍: Research papers must make a significant and original contribution to microbiology and be of interest to a broad readership. The results of any experimental approach that meets these objectives are welcome, particularly biochemical, molecular genetic, physiological, and/or physical investigations into microbial cells and their interactions with their environments, including their eukaryotic hosts. Mini-reviews in areas of special topical interest and papers on medical microbiology, ecology and systematics, including description of novel taxa, are also published. Theoretical papers and those that report on the analysis or ''mining'' of data are acceptable in principle if new information, interpretations, or hypotheses emerge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信