{"title":"Impact of Organochlorine Pesticides Exposure on Histone Modification H3K9ac: Implications for Unexplained Recurrent Miscarriage.","authors":"Sanaz Faramarz, Gholamreza Asadikaram, Mojtaba Abbasi-Jorjandi, Moslem Abolhassani, Katayoun Alidousti, Parvin Mangolian Shahrbabaki, Hossein Pourghadamyari","doi":"10.1007/s10528-024-10904-4","DOIUrl":null,"url":null,"abstract":"<p><p>Epigenetic alterations, changes in gene expression without DNA sequence modifications, are associated with various health disorders, including reproductive health issues. These alterations can be influenced by environmental factors such as pesticides. This study aimed to explore the relationship between exposure to Organochlorine Pesticides (OClPs) and the histone modification mark H3K9ac in the placenta and fetal tissue, in the context of unexplained recurrent miscarriage (URM). In the case-control study, serum samples from 73 women with URM and 30 healthy women were examined for the presence of OClPs, which include 2,4-DDT, 2,4-DDE, 4,4-DDT, 4,4-DDE, α-HCH, β-HCH, and γ-HCH, using gas chromatography. Western blot analysis was used to assess H3K9ac expression in placental and fetal tissues. In the URM group, significant increases were observed in the values of α-HCH, β-HCH, 2,4-DDE, and 4,4-DDE, as well as in the concentration of total OClPs (Ʃ3HCH, Ʃ2DDE, Ʃ2DDT, and Ʃ7OClP), compared to controls. While H3K9ac levels in fetal tissue showed no significant difference, a notable decrease was found in the placental tissue of the URM. In the placenta tissue of URM, logistic regression analysis also revealed a significant inverse correlation between the toxins α-HCH, 2,4-DDE, 4,4-DDE, 4,4-DDT, total OClPs, and reduced H3K9ac expression. Our findings suggest that OClPs exposure may contribute to URM by reducing H3K9ac expression in the placenta, potentially affecting placental growth and immune tolerance. This underscores the need for further investigation into the involved mechanisms and potential therapeutic interventions, and the importance of OClPs regulation for reproductive health protection.</p>","PeriodicalId":482,"journal":{"name":"Biochemical Genetics","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10528-024-10904-4","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Epigenetic alterations, changes in gene expression without DNA sequence modifications, are associated with various health disorders, including reproductive health issues. These alterations can be influenced by environmental factors such as pesticides. This study aimed to explore the relationship between exposure to Organochlorine Pesticides (OClPs) and the histone modification mark H3K9ac in the placenta and fetal tissue, in the context of unexplained recurrent miscarriage (URM). In the case-control study, serum samples from 73 women with URM and 30 healthy women were examined for the presence of OClPs, which include 2,4-DDT, 2,4-DDE, 4,4-DDT, 4,4-DDE, α-HCH, β-HCH, and γ-HCH, using gas chromatography. Western blot analysis was used to assess H3K9ac expression in placental and fetal tissues. In the URM group, significant increases were observed in the values of α-HCH, β-HCH, 2,4-DDE, and 4,4-DDE, as well as in the concentration of total OClPs (Ʃ3HCH, Ʃ2DDE, Ʃ2DDT, and Ʃ7OClP), compared to controls. While H3K9ac levels in fetal tissue showed no significant difference, a notable decrease was found in the placental tissue of the URM. In the placenta tissue of URM, logistic regression analysis also revealed a significant inverse correlation between the toxins α-HCH, 2,4-DDE, 4,4-DDE, 4,4-DDT, total OClPs, and reduced H3K9ac expression. Our findings suggest that OClPs exposure may contribute to URM by reducing H3K9ac expression in the placenta, potentially affecting placental growth and immune tolerance. This underscores the need for further investigation into the involved mechanisms and potential therapeutic interventions, and the importance of OClPs regulation for reproductive health protection.
期刊介绍:
Biochemical Genetics welcomes original manuscripts that address and test clear scientific hypotheses, are directed to a broad scientific audience, and clearly contribute to the advancement of the field through the use of sound sampling or experimental design, reliable analytical methodologies and robust statistical analyses.
Although studies focusing on particular regions and target organisms are welcome, it is not the journal’s goal to publish essentially descriptive studies that provide results with narrow applicability, or are based on very small samples or pseudoreplication.
Rather, Biochemical Genetics welcomes review articles that go beyond summarizing previous publications and create added value through the systematic analysis and critique of the current state of knowledge or by conducting meta-analyses.
Methodological articles are also within the scope of Biological Genetics, particularly when new laboratory techniques or computational approaches are fully described and thoroughly compared with the existing benchmark methods.
Biochemical Genetics welcomes articles on the following topics: Genomics; Proteomics; Population genetics; Phylogenetics; Metagenomics; Microbial genetics; Genetics and evolution of wild and cultivated plants; Animal genetics and evolution; Human genetics and evolution; Genetic disorders; Genetic markers of diseases; Gene technology and therapy; Experimental and analytical methods; Statistical and computational methods.