{"title":"DEAD-box RNA helicase RH20 positively regulates RNAi-based antiviral immunity in plants by associating with SGS3/RDR6 bodies.","authors":"Zhiyan Wen, Rujian Hu, Qinglin Pi, Dingliang Zhang, Jiangning Duan, Zhen Li, Qian Li, Xiaoyun Zhao, Meng Yang, Xiaofei Zhao, Deshui Liu, Zhen Su, Dawei Li, Yongliang Zhang","doi":"10.1111/pbi.14448","DOIUrl":null,"url":null,"abstract":"<p><p>RNA silencing plays a crucial role in defending against viral infections in diverse eukaryotic hosts. Despite extensive studies on core components of the antiviral RNAi pathway such as DCLs, AGOs and RDRs proteins, host factors involved in antiviral RNAi remain incompletely understood. In this study, we employed the proximity labelling approach to identify the host factors required for antiviral RNAi in Nicotiana benthamiana. Using the barley stripe mosaic virus (BSMV)-encoded γb, a viral suppressor of RNA silencing (VSR), as the bait protein, we identified the DEAD-box RNA helicase RH20, a broadly conserved protein in plants and animals with a homologous human protein known as DDX5. We demonstrated the interaction between RH20 and BSMV γb. Knockdown or knockout of RH20 attenuates the accumulation of viral small interfering RNAs, leading to increased susceptibility to BSMV, while overexpression of RH20 enhances resistance to BSMV, a process requiring the cytoplasmic localization and RNA-binding activity of RH20. In addition to BSMV, RH20 also negatively regulates the infection of several other positive-sense RNA viruses, suggesting the broad-spectrum antiviral activity of RH20. Mechanistic analysis revealed the colocalization and interaction of RH20 with SGS3/RDR6, and disruption of either SGS3 or RDR6 undermines the antiviral function of RH20, suggesting RH20 as a new component of the SGS3/RDR6 bodies. As a counter-defence, BSMV γb VSR subverts the RH20-mediated antiviral defence by interfering with the RH20-SGS3 interaction. Our results uncover RH20 as a new positive regulator of antiviral RNAi and provide new potential targets for controlling plant viral diseases.</p>","PeriodicalId":221,"journal":{"name":"Plant Biotechnology Journal","volume":" ","pages":"3295-3311"},"PeriodicalIF":10.1000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Biotechnology Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1111/pbi.14448","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/21 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
RNA silencing plays a crucial role in defending against viral infections in diverse eukaryotic hosts. Despite extensive studies on core components of the antiviral RNAi pathway such as DCLs, AGOs and RDRs proteins, host factors involved in antiviral RNAi remain incompletely understood. In this study, we employed the proximity labelling approach to identify the host factors required for antiviral RNAi in Nicotiana benthamiana. Using the barley stripe mosaic virus (BSMV)-encoded γb, a viral suppressor of RNA silencing (VSR), as the bait protein, we identified the DEAD-box RNA helicase RH20, a broadly conserved protein in plants and animals with a homologous human protein known as DDX5. We demonstrated the interaction between RH20 and BSMV γb. Knockdown or knockout of RH20 attenuates the accumulation of viral small interfering RNAs, leading to increased susceptibility to BSMV, while overexpression of RH20 enhances resistance to BSMV, a process requiring the cytoplasmic localization and RNA-binding activity of RH20. In addition to BSMV, RH20 also negatively regulates the infection of several other positive-sense RNA viruses, suggesting the broad-spectrum antiviral activity of RH20. Mechanistic analysis revealed the colocalization and interaction of RH20 with SGS3/RDR6, and disruption of either SGS3 or RDR6 undermines the antiviral function of RH20, suggesting RH20 as a new component of the SGS3/RDR6 bodies. As a counter-defence, BSMV γb VSR subverts the RH20-mediated antiviral defence by interfering with the RH20-SGS3 interaction. Our results uncover RH20 as a new positive regulator of antiviral RNAi and provide new potential targets for controlling plant viral diseases.
期刊介绍:
Plant Biotechnology Journal aspires to publish original research and insightful reviews of high impact, authored by prominent researchers in applied plant science. The journal places a special emphasis on molecular plant sciences and their practical applications through plant biotechnology. Our goal is to establish a platform for showcasing significant advances in the field, encompassing curiosity-driven studies with potential applications, strategic research in plant biotechnology, scientific analysis of crucial issues for the beneficial utilization of plant sciences, and assessments of the performance of plant biotechnology products in practical applications.