{"title":"Temporal asynchrony of plant and soil biota determines ecosystem multifunctional stability","authors":"Bing Wang, Shuaifei Wang, Liji Wu, Ying Wu, Shaopeng Wang, Yongfei Bai, Dima Chen","doi":"10.1111/gcb.17483","DOIUrl":null,"url":null,"abstract":"<p>The role of plant biodiversity in stabilizing ecosystem multifunctionality has been extensively studied; however, the impact of soil biota biodiversity on ecosystem multifunctional stability, particularly under multiple environmental changes, remains unexplored. By conducting an experiment with environmental changes (adding water and nitrogen to a long-term grazing experiment) and an experiment without environmental changes (an undisturbed site) in semi-arid grasslands, our research revealed that environmental changes-induced changes in temporal stability of both above- and belowground multifunctionality were mainly impacted by plant and soil biota asynchrony, rather than by species diversity. Furthermore, changes in temporal stability of above- and belowground multifunctionality, under both experiments with and without environmental changes, were mainly associated with plant and soil biota asynchrony, respectively, suggesting that the temporal asynchrony of plant and soil biota has independent and non-substitutable effects on multifunctional stability. Our findings emphasize the importance of considering both above- and belowground biodiversity or functions when evaluating the stabilizing effects of biodiversity on ecosystem functions.</p>","PeriodicalId":175,"journal":{"name":"Global Change Biology","volume":"30 8","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Change Biology","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/gcb.17483","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
引用次数: 0
Abstract
The role of plant biodiversity in stabilizing ecosystem multifunctionality has been extensively studied; however, the impact of soil biota biodiversity on ecosystem multifunctional stability, particularly under multiple environmental changes, remains unexplored. By conducting an experiment with environmental changes (adding water and nitrogen to a long-term grazing experiment) and an experiment without environmental changes (an undisturbed site) in semi-arid grasslands, our research revealed that environmental changes-induced changes in temporal stability of both above- and belowground multifunctionality were mainly impacted by plant and soil biota asynchrony, rather than by species diversity. Furthermore, changes in temporal stability of above- and belowground multifunctionality, under both experiments with and without environmental changes, were mainly associated with plant and soil biota asynchrony, respectively, suggesting that the temporal asynchrony of plant and soil biota has independent and non-substitutable effects on multifunctional stability. Our findings emphasize the importance of considering both above- and belowground biodiversity or functions when evaluating the stabilizing effects of biodiversity on ecosystem functions.
期刊介绍:
Global Change Biology is an environmental change journal committed to shaping the future and addressing the world's most pressing challenges, including sustainability, climate change, environmental protection, food and water safety, and global health.
Dedicated to fostering a profound understanding of the impacts of global change on biological systems and offering innovative solutions, the journal publishes a diverse range of content, including primary research articles, technical advances, research reviews, reports, opinions, perspectives, commentaries, and letters. Starting with the 2024 volume, Global Change Biology will transition to an online-only format, enhancing accessibility and contributing to the evolution of scholarly communication.