Regulation of Molecular Microheterogeneity in Electrolytes Enables Ampere-Hour-Level Aqueous LiMn2O4||Li4Ti5O12 Pouch Cells.

IF 27.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Advanced Materials Pub Date : 2024-10-01 Epub Date: 2024-08-21 DOI:10.1002/adma.202405913
Canfu Zhang, Binbin Chen, Qinlong Chen, Yingchun Liu, Xueqian Kong, Liumin Suo, Jun Lu, Huilin Pan
{"title":"Regulation of Molecular Microheterogeneity in Electrolytes Enables Ampere-Hour-Level Aqueous LiMn<sub>2</sub>O<sub>4</sub>||Li<sub>4</sub>Ti<sub>5</sub>O<sub>12</sub> Pouch Cells.","authors":"Canfu Zhang, Binbin Chen, Qinlong Chen, Yingchun Liu, Xueqian Kong, Liumin Suo, Jun Lu, Huilin Pan","doi":"10.1002/adma.202405913","DOIUrl":null,"url":null,"abstract":"<p><p>Aqueous batteries are attractive due to their high safety and fast reaction kinetics, but the narrow electrochemical stability window of H<sub>2</sub>O limits their applications. It is a big challenge to broaden the electrochemical operation window of aqueous electrolytes while retaining fast reaction kinetics. Here, a new organic aqueous mixture electrolyte of manipulatable (3D) molecular microheterogeneity with H<sub>2</sub>O-rich and H<sub>2</sub>O-poor domains is demonstrated. H<sub>2</sub>O-poor domains molecularly surround the reformed microclusters of H<sub>2</sub>O molecules through interfacial H-bonds, which thus not only inhibit the long-range transfer of H<sub>2</sub>O but also allow fast and consecutive Li<sup>+</sup> transport. This new design enables low-voltage anodes reversibly cycling with aqueous-based electrolytes and high ionic conductivity of 4.5 mS cm<sup>-1</sup>. LiMn<sub>2</sub>O<sub>4</sub>||Li<sub>4</sub>Ti<sub>5</sub>O<sub>12</sub> full cells demonstrate excellent cycling stability over 1000 cycles under various C rates and a low temperature of -20 °C. 1 Ah pouch cell delivers a high energy density of 79.3 Wh kg<sup>-1</sup> and high Coulombic efficiency of 99.4% at 1 C over 200 cycles. This work provides new insights into the design of electrolytes based on the molecular microheterogeneity for rechargeable batteries.</p>","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":null,"pages":null},"PeriodicalIF":27.4000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202405913","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/21 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Aqueous batteries are attractive due to their high safety and fast reaction kinetics, but the narrow electrochemical stability window of H2O limits their applications. It is a big challenge to broaden the electrochemical operation window of aqueous electrolytes while retaining fast reaction kinetics. Here, a new organic aqueous mixture electrolyte of manipulatable (3D) molecular microheterogeneity with H2O-rich and H2O-poor domains is demonstrated. H2O-poor domains molecularly surround the reformed microclusters of H2O molecules through interfacial H-bonds, which thus not only inhibit the long-range transfer of H2O but also allow fast and consecutive Li+ transport. This new design enables low-voltage anodes reversibly cycling with aqueous-based electrolytes and high ionic conductivity of 4.5 mS cm-1. LiMn2O4||Li4Ti5O12 full cells demonstrate excellent cycling stability over 1000 cycles under various C rates and a low temperature of -20 °C. 1 Ah pouch cell delivers a high energy density of 79.3 Wh kg-1 and high Coulombic efficiency of 99.4% at 1 C over 200 cycles. This work provides new insights into the design of electrolytes based on the molecular microheterogeneity for rechargeable batteries.

Abstract Image

调节电解质中的分子微异质性,实现安培小时级水性锰酸锂||钛酸锂5O12袋式电池。
水电池因其安全性高和反应动力学快而颇具吸引力,但 H2O 的电化学稳定性窗口较窄,限制了其应用。如何在保持快速反应动力学的同时拓宽水基电解质的电化学操作窗口是一个巨大的挑战。在此,我们展示了一种具有富 H2O 域和贫 H2O 域的可操控(三维)分子微异构的新型有机水性混合物电解质。贫 H2O 域通过界面 H 键以分子方式包围重整的 H2O 分子微簇,从而不仅抑制了 H2O 的长程传输,而且允许 Li+ 快速连续传输。这种新设计实现了低电压阳极与水基电解质的可逆循环,离子电导率高达 4.5 mS cm-1。LiMn2O4||Li4Ti5O12 全电池在各种 C 率和 -20 °C 低温条件下循环 1000 次以上,表现出卓越的循环稳定性。1 Ah 的袋装电池在 200 次循环中可提供 79.3 Wh kg-1 的高能量密度和 99.4% 的高库仑效率(1 C)。这项研究为基于可充电电池分子微异构性的电解质设计提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信