Conversion of Biopolymer to UV-Cross-Linkable Conductive Ink with High Conductivity, Biocompatibility, and Biodegradability (Adv. Mater. Technol. 16/2024)
IF 6.4 3区 材料科学Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
{"title":"Conversion of Biopolymer to UV-Cross-Linkable Conductive Ink with High Conductivity, Biocompatibility, and Biodegradability (Adv. Mater. Technol. 16/2024)","authors":"Euiseok Jeong, Seungae Lee","doi":"10.1002/admt.202470073","DOIUrl":null,"url":null,"abstract":"<p><b>Biocompatible Conductive Inks</b></p><p>In article number 2302163, Seungae Lee and Euiseok Jeong develop biocompatible and UV-cross-linkable conductive inks for implantable bioelectronics by grafting polypyrrole on biopolymers. The figure extending from the top to the center of the cover image represents polymerization of pyrrole on sericin extracted from cocoons. The figure at bottom and the image of neurons in the background illustrate conductive inks are applied to implantable biosensor.\n\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure></p>","PeriodicalId":7292,"journal":{"name":"Advanced Materials Technologies","volume":null,"pages":null},"PeriodicalIF":6.4000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/admt.202470073","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials Technologies","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/admt.202470073","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Biocompatible Conductive Inks
In article number 2302163, Seungae Lee and Euiseok Jeong develop biocompatible and UV-cross-linkable conductive inks for implantable bioelectronics by grafting polypyrrole on biopolymers. The figure extending from the top to the center of the cover image represents polymerization of pyrrole on sericin extracted from cocoons. The figure at bottom and the image of neurons in the background illustrate conductive inks are applied to implantable biosensor.
期刊介绍:
Advanced Materials Technologies Advanced Materials Technologies is the new home for all technology-related materials applications research, with particular focus on advanced device design, fabrication and integration, as well as new technologies based on novel materials. It bridges the gap between fundamental laboratory research and industry.