Eun-Yeong Bok, Seung-Won Yi, Han Gyu Lee, Jae Kyeom Kim, Kangwook Lee, Seungmin Ha, Bumseok Kim, Young-Hun Jung, Sang-Ik Oh
{"title":"Comprehensive analysis of a peripheral blood transcriptome signature in piglets infected with Salmonella Typhimurium: insight into immune responses","authors":"Eun-Yeong Bok, Seung-Won Yi, Han Gyu Lee, Jae Kyeom Kim, Kangwook Lee, Seungmin Ha, Bumseok Kim, Young-Hun Jung, Sang-Ik Oh","doi":"10.1186/s13765-024-00924-4","DOIUrl":null,"url":null,"abstract":"<div><p><i>Salmonella</i> Typhimurium (ST) infection in pigs poses a significant threat to animal health and food safety; the intricate mechanisms underlying host–immune responses and pathogen persistence remain poorly understood. To address this knowledge gap, we comprehensively analyzed the peripheral blood transcriptome in piglets infected with ST. We performed histopathological evaluation, blood parameter analysis, advanced RNA-sequencing techniques, and quantitative reverse transcription PCR (RT-qPCR)-based validation. The increasement in the monocyte counts at 2 days post-infection suggested its potential to serve as a hematological marker for ST infection in piglets. Functional and pathway enrichment analyses of the differentially expressed genes highlighted the pivotal roles of innate and adaptive immune responses, notably in pathways associated with Toll-like receptors, NIK/NF-κB signaling, cytokine signaling, and T cell proliferation. RT-qPCR-based validation using peripheral blood mononuclear cells provided additional insights into the immune system dynamics in response to ST infection, revealing the marked elevation of the interleukin (<i>IL</i>)<i>-15</i>, <i>IL-27</i>, and <i>CXCL10</i> levels being significantly elevated in ST-infected piglets. Our comprehensive analysis underscores the multifaceted impact of ST infection on piglets and offers valuable insights into the host–pathogen interactions and the role of host immune system during ST infection.</p></div>","PeriodicalId":467,"journal":{"name":"Applied Biological Chemistry","volume":"67 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://applbiolchem.springeropen.com/counter/pdf/10.1186/s13765-024-00924-4","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Biological Chemistry","FirstCategoryId":"97","ListUrlMain":"https://link.springer.com/article/10.1186/s13765-024-00924-4","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Salmonella Typhimurium (ST) infection in pigs poses a significant threat to animal health and food safety; the intricate mechanisms underlying host–immune responses and pathogen persistence remain poorly understood. To address this knowledge gap, we comprehensively analyzed the peripheral blood transcriptome in piglets infected with ST. We performed histopathological evaluation, blood parameter analysis, advanced RNA-sequencing techniques, and quantitative reverse transcription PCR (RT-qPCR)-based validation. The increasement in the monocyte counts at 2 days post-infection suggested its potential to serve as a hematological marker for ST infection in piglets. Functional and pathway enrichment analyses of the differentially expressed genes highlighted the pivotal roles of innate and adaptive immune responses, notably in pathways associated with Toll-like receptors, NIK/NF-κB signaling, cytokine signaling, and T cell proliferation. RT-qPCR-based validation using peripheral blood mononuclear cells provided additional insights into the immune system dynamics in response to ST infection, revealing the marked elevation of the interleukin (IL)-15, IL-27, and CXCL10 levels being significantly elevated in ST-infected piglets. Our comprehensive analysis underscores the multifaceted impact of ST infection on piglets and offers valuable insights into the host–pathogen interactions and the role of host immune system during ST infection.
期刊介绍:
Applied Biological Chemistry aims to promote the interchange and dissemination of scientific data among researchers in the field of agricultural and biological chemistry. The journal covers biochemistry and molecular biology, medical and biomaterial science, food science, and environmental science as applied to multidisciplinary agriculture.