Enhancing Data-Driven Stochastic Control via Bundled Interval MDP

IF 2.4 Q2 AUTOMATION & CONTROL SYSTEMS
Rudi Coppola;Andrea Peruffo;Licio Romao;Alessandro Abate;Manuel Mazo
{"title":"Enhancing Data-Driven Stochastic Control via Bundled Interval MDP","authors":"Rudi Coppola;Andrea Peruffo;Licio Romao;Alessandro Abate;Manuel Mazo","doi":"10.1109/LCSYS.2024.3417852","DOIUrl":null,"url":null,"abstract":"The abstraction of dynamical systems is a powerful tool that enables the design of feedback controllers using a correct-by-design framework. We investigate a novel scheme to obtain data-driven abstractions of discrete-time stochastic processes in terms of richer discrete stochastic models, whose actions lead to nondeterministic transitions over the space of probability measures. The data-driven component of the proposed methodology lies in the fact that we only assume samples from an unknown probability distribution. We also rely on the model of the underlying dynamics to build our abstraction through backward reachability computations. The nondeterminism in the probability space is captured by a collection of Markov Processes, and we identify how this model can improve upon existing abstraction techniques in terms of satisfying temporal properties, such as safety or reach-avoid. The connection between the discrete and the underlying dynamics is made formal through the use of the scenario approach theory. Numerical experiments illustrate the advantages and main limitations of the proposed techniques with respect to existing approaches.","PeriodicalId":37235,"journal":{"name":"IEEE Control Systems Letters","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Control Systems Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10566855/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

The abstraction of dynamical systems is a powerful tool that enables the design of feedback controllers using a correct-by-design framework. We investigate a novel scheme to obtain data-driven abstractions of discrete-time stochastic processes in terms of richer discrete stochastic models, whose actions lead to nondeterministic transitions over the space of probability measures. The data-driven component of the proposed methodology lies in the fact that we only assume samples from an unknown probability distribution. We also rely on the model of the underlying dynamics to build our abstraction through backward reachability computations. The nondeterminism in the probability space is captured by a collection of Markov Processes, and we identify how this model can improve upon existing abstraction techniques in terms of satisfying temporal properties, such as safety or reach-avoid. The connection between the discrete and the underlying dynamics is made formal through the use of the scenario approach theory. Numerical experiments illustrate the advantages and main limitations of the proposed techniques with respect to existing approaches.
通过捆绑区间 MDP 加强数据驱动的随机控制
对动态系统进行抽象是一种强大的工具,可以利用 "按设计纠正 "框架设计反馈控制器。我们研究了一种新方案,通过更丰富的离散随机模型获得数据驱动的离散时间随机过程抽象,这些模型的动作会导致概率度量空间上的非确定性转换。所提方法的数据驱动部分在于,我们只假设样本来自未知概率分布。我们还依靠底层动力学模型,通过后向可达性计算建立我们的抽象。概率空间中的非确定性由马尔可夫过程集合来捕捉,我们确定了这一模型如何在满足时间属性(如安全性或到达-避免)方面改进现有的抽象技术。通过使用情景方法理论,离散模型与底层动态模型之间的联系变得正式起来。数值实验说明了所提出的技术相对于现有方法的优势和主要局限性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Control Systems Letters
IEEE Control Systems Letters Mathematics-Control and Optimization
CiteScore
4.40
自引率
13.30%
发文量
471
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信