{"title":"Effect of waves on the magnitude and direction of wind stress over the Ocean","authors":"","doi":"10.1016/j.ocemod.2024.102420","DOIUrl":null,"url":null,"abstract":"<div><p>Correctly estimating the wind stress at the sea surface is of the utmost importance in models for climate studies, weather forecasting, and ocean–atmosphere interaction. The wind stress is mainly obtained by drag coefficient parameterizations, which always consider the wind stress to be aligned with the wind, but this is sometimes the case. Also, during moderate to weak wind conditions, these parameterizations may lead to high estimation errors due to the presence of swell. This study measured the wind stress with a high-rate (100 Hz) sonic anemometer mounted on a spar buoy. The sea state was also characterized by obtaining the directional spectrum of the waves by six wave-staff arrays sensing the free surface level at 10 Hz. Bouy’s movement was corrected by employing an inertial motion unit. The turbulent and wave-coherent wind stress components were also estimated and analyzed. It was observed that during swell conditions with wind traveling in the same direction, the wave-coherent wind stress component has an opposite direction to the wind and dampens the total wind stress magnitude. During counter-directional wind relative to swell events, the wave boundary layer is modified; swell produces a wave-coherent wind stress in the same direction as the wind, resulting in an enhanced total wind stress magnitude. The wave age, significant wave height, and the traveling direction of the swell relative to the wind are essential to correctly estimating the wind stress in swell-dominant conditions. A set of empirical parameterizations for each wind stress component is proposed.</p></div>","PeriodicalId":19457,"journal":{"name":"Ocean Modelling","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1463500324001070/pdfft?md5=c4ea3556068250c5b25eb500665fbf6c&pid=1-s2.0-S1463500324001070-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ocean Modelling","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1463500324001070","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Correctly estimating the wind stress at the sea surface is of the utmost importance in models for climate studies, weather forecasting, and ocean–atmosphere interaction. The wind stress is mainly obtained by drag coefficient parameterizations, which always consider the wind stress to be aligned with the wind, but this is sometimes the case. Also, during moderate to weak wind conditions, these parameterizations may lead to high estimation errors due to the presence of swell. This study measured the wind stress with a high-rate (100 Hz) sonic anemometer mounted on a spar buoy. The sea state was also characterized by obtaining the directional spectrum of the waves by six wave-staff arrays sensing the free surface level at 10 Hz. Bouy’s movement was corrected by employing an inertial motion unit. The turbulent and wave-coherent wind stress components were also estimated and analyzed. It was observed that during swell conditions with wind traveling in the same direction, the wave-coherent wind stress component has an opposite direction to the wind and dampens the total wind stress magnitude. During counter-directional wind relative to swell events, the wave boundary layer is modified; swell produces a wave-coherent wind stress in the same direction as the wind, resulting in an enhanced total wind stress magnitude. The wave age, significant wave height, and the traveling direction of the swell relative to the wind are essential to correctly estimating the wind stress in swell-dominant conditions. A set of empirical parameterizations for each wind stress component is proposed.
期刊介绍:
The main objective of Ocean Modelling is to provide rapid communication between those interested in ocean modelling, whether through direct observation, or through analytical, numerical or laboratory models, and including interactions between physical and biogeochemical or biological phenomena. Because of the intimate links between ocean and atmosphere, involvement of scientists interested in influences of either medium on the other is welcome. The journal has a wide scope and includes ocean-atmosphere interaction in various forms as well as pure ocean results. In addition to primary peer-reviewed papers, the journal provides review papers, preliminary communications, and discussions.