Dual fractional parabolic equations with indefinite nonlinearities

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Wenxiong Chen , Yahong Guo
{"title":"Dual fractional parabolic equations with indefinite nonlinearities","authors":"Wenxiong Chen ,&nbsp;Yahong Guo","doi":"10.1016/j.aim.2024.109891","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we consider the following indefinite dual fractional parabolic equation involving the Marchaud fractional time derivative<span><span><span><math><msubsup><mrow><mo>∂</mo></mrow><mrow><mi>t</mi></mrow><mrow><mi>α</mi></mrow></msubsup><mi>u</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>t</mi><mo>)</mo><mo>+</mo><msup><mrow><mo>(</mo><mo>−</mo><mi>Δ</mi><mo>)</mo></mrow><mrow><mi>s</mi></mrow></msup><mi>u</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>t</mi><mo>)</mo><mo>=</mo><mi>a</mi><mo>(</mo><mi>x</mi><mo>)</mo><mi>f</mi><mo>(</mo><mi>u</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>t</mi><mo>)</mo><mo>)</mo><mspace></mspace><mspace></mspace><mtext>in</mtext><mspace></mspace><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>×</mo><mi>R</mi><mo>,</mo></math></span></span></span> where <span><math><mi>α</mi><mo>,</mo><mi>s</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span>, and the functions <em>a</em> and <em>f</em> are nondecreasing. We prove that there is no positive bounded solutions. To this end, we first show that all positive bounded solutions <span><math><mi>u</mi><mo>(</mo><mo>⋅</mo><mo>,</mo><mi>t</mi><mo>)</mo></math></span> must be strictly monotone increasing along the direction determined by <span><math><mi>a</mi><mo>(</mo><mi>x</mi><mo>)</mo></math></span>. Then by mollifying the first eigenfunction for fractional Laplacian <span><math><msup><mrow><mo>(</mo><mo>−</mo><mi>Δ</mi><mo>)</mo></mrow><mrow><mi>s</mi></mrow></msup></math></span> and constructing an appropriate subsolution for the Marchaud fractional operator <span><math><msubsup><mrow><mo>∂</mo></mrow><mrow><mi>t</mi></mrow><mrow><mi>α</mi></mrow></msubsup><mo>−</mo><mn>1</mn></math></span>, we derive a contradiction and thus obtain the non-existence of solutions.</p><p>To overcome the challenges caused by the dual non-locality of the operator <span><math><msubsup><mrow><mo>∂</mo></mrow><mrow><mi>t</mi></mrow><mrow><mi>α</mi></mrow></msubsup><mo>+</mo><msup><mrow><mo>(</mo><mo>−</mo><mi>Δ</mi><mo>)</mo></mrow><mrow><mi>s</mi></mrow></msup></math></span>, we introduce several new ideas and novel techniques. These novel approaches are not only applicable to the specific problem at hand but can also be extended to address various other fractional problems, be they elliptic or parabolic, including those featuring dual nonlocalities associated with the Marchaud time derivatives.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870824004067","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we consider the following indefinite dual fractional parabolic equation involving the Marchaud fractional time derivativetαu(x,t)+(Δ)su(x,t)=a(x)f(u(x,t))inRn×R, where α,s(0,1), and the functions a and f are nondecreasing. We prove that there is no positive bounded solutions. To this end, we first show that all positive bounded solutions u(,t) must be strictly monotone increasing along the direction determined by a(x). Then by mollifying the first eigenfunction for fractional Laplacian (Δ)s and constructing an appropriate subsolution for the Marchaud fractional operator tα1, we derive a contradiction and thus obtain the non-existence of solutions.

To overcome the challenges caused by the dual non-locality of the operator tα+(Δ)s, we introduce several new ideas and novel techniques. These novel approaches are not only applicable to the specific problem at hand but can also be extended to address various other fractional problems, be they elliptic or parabolic, including those featuring dual nonlocalities associated with the Marchaud time derivatives.

具有不定非线性的双分数抛物方程
在本文中,我们考虑在 Rn×R 中涉及 Marchaud 分数时间导数的下列不定对偶分数抛物方程∂tαu(x,t)+(-Δ)su(x,t)=a(x)f(u(x,t)),其中 α,s∈(0,1),函数 a 和 f 是非递减函数。我们将证明不存在正界解。为此,我们首先证明所有正界解 u(⋅,t) 必须沿 a(x) 确定的方向严格单调递增。为了克服算子∂tα+(-Δ)s 的对偶非位置性所带来的挑战,我们引入了一些新思想和新技术。这些新方法不仅适用于手头的具体问题,还可扩展用于解决其他各种分式问题,无论是椭圆问题还是抛物问题,包括那些与马尔查时间导数相关的双重非局部性问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信