Valorization of ladle furnace slag and functional enhancement of post-adsorption materials

Otmane Sarti , Emilia Otal , Fouad El Mansouri , Hajar Ghannam , Salaheddine Elmoutez , Mustapha El Hadri , Mohamed Saidi , José Morillo
{"title":"Valorization of ladle furnace slag and functional enhancement of post-adsorption materials","authors":"Otmane Sarti ,&nbsp;Emilia Otal ,&nbsp;Fouad El Mansouri ,&nbsp;Hajar Ghannam ,&nbsp;Salaheddine Elmoutez ,&nbsp;Mustapha El Hadri ,&nbsp;Mohamed Saidi ,&nbsp;José Morillo","doi":"10.1016/j.wmb.2024.08.004","DOIUrl":null,"url":null,"abstract":"<div><p>Carbonating metallurgical slags plays a pivotal role in achieving efficient mineral CO<sub>2</sub> sequestration and waste valorization.<!--> <!-->This research introduces a novel integrated approach that combines the carbonation of Ladle Furnace Slag (LFS) with the simultaneous degradation of Methyl Orange (MO) in synthetic water. The comprehensive characterization of LFS was conducted using X-ray Diffraction (XRD), X-ray Fluorescence (XRF), Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES), Brunauer-Emmett-Teller (BET) analysis, and Scanning Electron Microscopy (SEM). The adsorption experiments reveal the high LSF capacity for MO degradation (149.25 mg/g) following pseudo-second-order kinetics (R<sup>2</sup> = 0.99) and Langmuir isotherm (R<sup>2</sup> = 0.98). The adsorption process was primarily governed by chemical and electrostatic interactions. Analysis of LFS-loaded MO indicated a reduction in Ca(OH)<sub>2</sub> <!-->phases, responsible for CO<sub>2</sub> <!-->mineralization and the formation of calcite (CaCO<sub>3</sub>). Furthermore, the study explored the reusability of LFS-MO composites through chemical and thermal modifications. Pyrolysis of carbonated LFS with KOH impregnation exhibited potential for regenerating Ca(OH)<sub>2</sub> <!-->phases, while thermal modification induced significant mineral and microstructural changes, creating new active sites at various temperatures. Additionally, the Fenton-like reaction followed by thermal modification resulted in a highly organized and microporous LFS structure with enhanced surface area and porosity. Moreover, modification with ZnSO<sub>4</sub> <!-->followed by thermal activation promoted the formation of ZnO nanoxides on the LFS surface. This research proposes an innovative carbonating approach for metallurgical slags and wastewater treatment, extending their utility and enhancing industrial sustainability. Carbonated LFS-MO composites hold promise for applications in construction, CO<sub>2</sub> <!-->capture, and wastewater treatment, thereby fostering sustainable industrial practices with ongoing research and development efforts.</p></div>","PeriodicalId":101276,"journal":{"name":"Waste Management Bulletin","volume":"2 4","pages":"Pages 41-55"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949750724000725/pdfft?md5=0e51d18a33ededf61d83d2649ca09414&pid=1-s2.0-S2949750724000725-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Waste Management Bulletin","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949750724000725","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Carbonating metallurgical slags plays a pivotal role in achieving efficient mineral CO2 sequestration and waste valorization. This research introduces a novel integrated approach that combines the carbonation of Ladle Furnace Slag (LFS) with the simultaneous degradation of Methyl Orange (MO) in synthetic water. The comprehensive characterization of LFS was conducted using X-ray Diffraction (XRD), X-ray Fluorescence (XRF), Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES), Brunauer-Emmett-Teller (BET) analysis, and Scanning Electron Microscopy (SEM). The adsorption experiments reveal the high LSF capacity for MO degradation (149.25 mg/g) following pseudo-second-order kinetics (R2 = 0.99) and Langmuir isotherm (R2 = 0.98). The adsorption process was primarily governed by chemical and electrostatic interactions. Analysis of LFS-loaded MO indicated a reduction in Ca(OH)2 phases, responsible for CO2 mineralization and the formation of calcite (CaCO3). Furthermore, the study explored the reusability of LFS-MO composites through chemical and thermal modifications. Pyrolysis of carbonated LFS with KOH impregnation exhibited potential for regenerating Ca(OH)2 phases, while thermal modification induced significant mineral and microstructural changes, creating new active sites at various temperatures. Additionally, the Fenton-like reaction followed by thermal modification resulted in a highly organized and microporous LFS structure with enhanced surface area and porosity. Moreover, modification with ZnSO4 followed by thermal activation promoted the formation of ZnO nanoxides on the LFS surface. This research proposes an innovative carbonating approach for metallurgical slags and wastewater treatment, extending their utility and enhancing industrial sustainability. Carbonated LFS-MO composites hold promise for applications in construction, CO2 capture, and wastewater treatment, thereby fostering sustainable industrial practices with ongoing research and development efforts.

Abstract Image

钢包炉渣的增值和吸附后材料的功能增强
冶金渣碳化在实现高效矿物二氧化碳封存和废物价值化方面发挥着举足轻重的作用。本研究介绍了一种新颖的综合方法,它将钢包炉渣(LFS)碳化与合成水中甲基橙(MO)的同步降解相结合。利用 X 射线衍射 (XRD)、X 射线荧光 (XRF)、电感耦合等离子体光学发射光谱 (ICP-OES)、布鲁诺-艾美特-泰勒 (BET) 分析和扫描电子显微镜 (SEM) 对 LFS 进行了综合表征。吸附实验表明,LSF 对 MO 的降解能力很高(149.25 mg/g),符合假二阶动力学(R2 = 0.99)和朗缪尔等温线(R2 = 0.98)。吸附过程主要受化学和静电相互作用的影响。对负载 LFS 的 MO 的分析表明,Ca(OH)2 相减少了,Ca(OH)2 相负责 CO2 矿化和方解石(CaCO3)的形成。此外,该研究还通过化学和热学改性探索了 LFS-MO 复合材料的可再利用性。碳化 LFS 的热解与 KOH 浸渍显示出再生 Ca(OH)2 相的潜力,而热改性则引起了显著的矿物和微结构变化,在不同温度下形成了新的活性位点。此外,Fenton 类反应和热改性还产生了高度有序的微孔 LFS 结构,提高了表面积和孔隙率。此外,用 ZnSO4 进行改性后再进行热活化,可促进氧化锌纳米氧化物在 LFS 表面的形成。这项研究为冶金渣和废水处理提出了一种创新的碳化方法,扩大了它们的应用范围,提高了工业的可持续性。碳化 LFS-MO 复合材料有望应用于建筑、二氧化碳捕获和废水处理,从而通过持续的研发工作促进可持续的工业实践。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信