Tanvi A. Puri , Stephanie E. Lieblich , Muna Ibrahim , Liisa A.M. Galea
{"title":"Pregnancy history and estradiol influence spatial memory, hippocampal plasticity, and inflammation in middle-aged rats","authors":"Tanvi A. Puri , Stephanie E. Lieblich , Muna Ibrahim , Liisa A.M. Galea","doi":"10.1016/j.yhbeh.2024.105616","DOIUrl":null,"url":null,"abstract":"<div><p>Pregnancy and motherhood can have long-term effects on cognition and brain aging in both humans and rodents. Estrogens are related to cognitive function and neuroplasticity. Estrogens can improve cognition in postmenopausal women, but the evidence is mixed, partly due to differences in age of initiation, type of menopause, dose, formulation and route of administration. Additionally, past pregnancy influences brain aging and cognition as a younger age of first pregnancy in humans is associated with poorer aging outcomes. However, few animal studies have examined specific features of pregnancy history or the possible mechanisms underlying these changes. We examined whether maternal age at first pregnancy and estradiol differentially affected hippocampal neuroplasticity, inflammation, spatial reference cognition, and immediate early gene activation in response to spatial memory retrieval in middle-age. Thirteen-month-old rats (who were nulliparous (never mothered) or previously primiparous (had a litter) at three or seven months) received daily injections of estradiol (or vehicle) for sixteen days and were tested on the Morris Water Maze. An older age of first pregnancy was associated with impaired spatial memory but improved performance on reversal training, and increased number of new neurons in the ventral hippocampus. Estradiol decreased activation of new neurons in the dorsal hippocampus, regardless of parity history. Estradiol also decreased the production of anti-inflammatory cytokines based on age of first pregnancy. This work suggests that estradiol affects neuroplasticity and neuroinflammation in middle age, and that age of first pregnancy can have long lasting effects on hippocampus structure and function.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0018506X24001417/pdfft?md5=e0755007ed98e401105dcc3761369974&pid=1-s2.0-S0018506X24001417-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0018506X24001417","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Pregnancy and motherhood can have long-term effects on cognition and brain aging in both humans and rodents. Estrogens are related to cognitive function and neuroplasticity. Estrogens can improve cognition in postmenopausal women, but the evidence is mixed, partly due to differences in age of initiation, type of menopause, dose, formulation and route of administration. Additionally, past pregnancy influences brain aging and cognition as a younger age of first pregnancy in humans is associated with poorer aging outcomes. However, few animal studies have examined specific features of pregnancy history or the possible mechanisms underlying these changes. We examined whether maternal age at first pregnancy and estradiol differentially affected hippocampal neuroplasticity, inflammation, spatial reference cognition, and immediate early gene activation in response to spatial memory retrieval in middle-age. Thirteen-month-old rats (who were nulliparous (never mothered) or previously primiparous (had a litter) at three or seven months) received daily injections of estradiol (or vehicle) for sixteen days and were tested on the Morris Water Maze. An older age of first pregnancy was associated with impaired spatial memory but improved performance on reversal training, and increased number of new neurons in the ventral hippocampus. Estradiol decreased activation of new neurons in the dorsal hippocampus, regardless of parity history. Estradiol also decreased the production of anti-inflammatory cytokines based on age of first pregnancy. This work suggests that estradiol affects neuroplasticity and neuroinflammation in middle age, and that age of first pregnancy can have long lasting effects on hippocampus structure and function.