Well-posedness and decay for a nonlinear propagation wave model in atmospheric flows

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Diego Alonso-Orán , Rafael Granero-Belinchón
{"title":"Well-posedness and decay for a nonlinear propagation wave model in atmospheric flows","authors":"Diego Alonso-Orán ,&nbsp;Rafael Granero-Belinchón","doi":"10.1016/j.physd.2024.134323","DOIUrl":null,"url":null,"abstract":"<div><p>In this note, we provide two results concerning the global well-posedness and decay of solutions to an asymptotic model describing the nonlinear wave propagation in the troposphere, namely, the morning glory phenomenon. The proof of the first result combines a pointwise estimate together with some interpolation inequalities to close the energy estimates in Sobolev spaces. The second proof relies on suitable Wiener-like functional spaces.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0167278924002744/pdfft?md5=aa95e14222633382f3b80faa1e3a748b&pid=1-s2.0-S0167278924002744-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167278924002744","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

In this note, we provide two results concerning the global well-posedness and decay of solutions to an asymptotic model describing the nonlinear wave propagation in the troposphere, namely, the morning glory phenomenon. The proof of the first result combines a pointwise estimate together with some interpolation inequalities to close the energy estimates in Sobolev spaces. The second proof relies on suitable Wiener-like functional spaces.

大气流动中非线性传播波模型的拟合与衰减
在本论文中,我们提供了两个关于描述对流层非线性波传播(即晨光现象)的渐近模型解的全局好求和衰减的结果。第一个结果的证明结合了点估计和一些插值不等式,以关闭 Sobolev 空间中的能量估计。第二个证明依赖于合适的类维纳函数空间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信