After opening the black box: Meta-dehumanization matters in algorithm recommendation aversion

IF 11.3 1区 化学 Q1 CHEMISTRY, PHYSICAL
Gewei Chen, Jianning Dang, Li Liu
{"title":"After opening the black box: Meta-dehumanization matters in algorithm recommendation aversion","authors":"Gewei Chen,&nbsp;Jianning Dang,&nbsp;Li Liu","doi":"10.1016/j.chb.2024.108411","DOIUrl":null,"url":null,"abstract":"<div><p>Perceptions of algorithms as opaque, commonly referred to as the black box problem, can make people reluctant to accept a recommendation from an algorithm rather than a human. Interventions that enhance people's subjective understanding of algorithms have been shown to reduce this aversion. However, across four preregistered studies (<em>N</em> = 960), we found that in the online shopping context, after explaining the algorithm recommendation process (versus human recommendation), users felt dehumanized and thus averse to algorithms (Study 1). This effect persisted, regardless of the type of algorithm (i.e., conventional algorithms or large language models; Study 2) or recommended product (i.e., search or experience products; Study 3). Notably, considering large language models (versus conventional algorithms) as the recommendation agent (Study 2) and framing algorithm recommendation as consumer-serving (versus website-serving; Study 4) mitigated algorithm aversion caused by meta-dehumanization. Our findings contribute to ongoing discussions on algorithm transparency, enrich the literature on human–algorithm interaction, and provide practical insights for encouraging algorithm adoption.</p></div>","PeriodicalId":9,"journal":{"name":"ACS Catalysis ","volume":null,"pages":null},"PeriodicalIF":11.3000,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Catalysis ","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0747563224002796","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Perceptions of algorithms as opaque, commonly referred to as the black box problem, can make people reluctant to accept a recommendation from an algorithm rather than a human. Interventions that enhance people's subjective understanding of algorithms have been shown to reduce this aversion. However, across four preregistered studies (N = 960), we found that in the online shopping context, after explaining the algorithm recommendation process (versus human recommendation), users felt dehumanized and thus averse to algorithms (Study 1). This effect persisted, regardless of the type of algorithm (i.e., conventional algorithms or large language models; Study 2) or recommended product (i.e., search or experience products; Study 3). Notably, considering large language models (versus conventional algorithms) as the recommendation agent (Study 2) and framing algorithm recommendation as consumer-serving (versus website-serving; Study 4) mitigated algorithm aversion caused by meta-dehumanization. Our findings contribute to ongoing discussions on algorithm transparency, enrich the literature on human–algorithm interaction, and provide practical insights for encouraging algorithm adoption.

打开黑盒之后:算法推荐厌恶中的元非人化问题
人们认为算法是不透明的,这通常被称为黑箱问题,这会让人们不愿意接受算法而非人类的推荐。有研究表明,加强人们对算法的主观理解的干预措施可以减少这种厌恶感。然而,在四项预先登记的研究中(N = 960),我们发现,在网上购物的情况下,在解释了算法推荐过程(相对于人工推荐)之后,用户感觉到了非人化,从而对算法产生了厌恶(研究 1)。无论算法的类型(即传统算法或大型语言模型;研究 2)或推荐的产品(即搜索产品或体验产品;研究 3)如何,这种影响都持续存在。值得注意的是,将大型语言模型(相对于传统算法)视为推荐代理(研究 2)以及将算法推荐视为为消费者服务(相对于为网站服务;研究 4)减轻了元非人化引起的算法厌恶。我们的研究结果有助于当前关于算法透明度的讨论,丰富了关于人与算法互动的文献,并为鼓励算法的采用提供了实用的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Catalysis
ACS Catalysis CHEMISTRY, PHYSICAL-
CiteScore
20.80
自引率
6.20%
发文量
1253
审稿时长
1.5 months
期刊介绍: ACS Catalysis is an esteemed journal that publishes original research in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. It offers broad coverage across diverse areas such as life sciences, organometallics and synthesis, photochemistry and electrochemistry, drug discovery and synthesis, materials science, environmental protection, polymer discovery and synthesis, and energy and fuels. The scope of the journal is to showcase innovative work in various aspects of catalysis. This includes new reactions and novel synthetic approaches utilizing known catalysts, the discovery or modification of new catalysts, elucidation of catalytic mechanisms through cutting-edge investigations, practical enhancements of existing processes, as well as conceptual advances in the field. Contributions to ACS Catalysis can encompass both experimental and theoretical research focused on catalytic molecules, macromolecules, and materials that exhibit catalytic turnover.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信