Verónica Collado Ciprés , José García , José María Cabrera , Luis Llanes
{"title":"A comprehensive constitutive equation for the hot deformation of WC-Co","authors":"Verónica Collado Ciprés , José García , José María Cabrera , Luis Llanes","doi":"10.1016/j.ijrmhm.2024.106843","DOIUrl":null,"url":null,"abstract":"<div><p>Hot deformation of five microstructurally different sintered WC-Co cemented carbides during hot compression testing was investigated in the temperature range of 700–1000 °C and at strain rates ranging from 0.0005 to 0.1 s<sup>−1</sup>. The stress-strain flow curves of the studied materials exhibited a peak followed by a fast drop in stress or sudden failure. A higher peak stress was achieved by decreasing the testing temperature, increasing the strain rate or lowering the amount of binder content. Constitutive equations were used to develop a useful physically based model describing the mechanical resistance of cemented carbides as a function of three different stress terms, representing stresses carried by the binder phase, accommodated by the carbide phase and associated with the interaction between the metallic and ceramic phases. The first term was modelled after the hot deformation of Co and was very small. The second one revealed an activation energy of <em>Q</em> = 585 kJ/mol, identified as that of W pipe diffusion in WC, and was barely dependent on the temperature and strain rate. Finally, the third stress contribution provided valuable insight on the role of the carbide skeleton in cemented carbides, proving the major effect of the microstructural arrangement in the deformation resistance. All the testing conditions were included in the model, with only a few extreme data points having to be excluded. Outcomes of the model were further supported by a thorough EBSD characterization.</p></div>","PeriodicalId":14216,"journal":{"name":"International Journal of Refractory Metals & Hard Materials","volume":"124 ","pages":"Article 106843"},"PeriodicalIF":4.2000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Refractory Metals & Hard Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263436824002919","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Hot deformation of five microstructurally different sintered WC-Co cemented carbides during hot compression testing was investigated in the temperature range of 700–1000 °C and at strain rates ranging from 0.0005 to 0.1 s−1. The stress-strain flow curves of the studied materials exhibited a peak followed by a fast drop in stress or sudden failure. A higher peak stress was achieved by decreasing the testing temperature, increasing the strain rate or lowering the amount of binder content. Constitutive equations were used to develop a useful physically based model describing the mechanical resistance of cemented carbides as a function of three different stress terms, representing stresses carried by the binder phase, accommodated by the carbide phase and associated with the interaction between the metallic and ceramic phases. The first term was modelled after the hot deformation of Co and was very small. The second one revealed an activation energy of Q = 585 kJ/mol, identified as that of W pipe diffusion in WC, and was barely dependent on the temperature and strain rate. Finally, the third stress contribution provided valuable insight on the role of the carbide skeleton in cemented carbides, proving the major effect of the microstructural arrangement in the deformation resistance. All the testing conditions were included in the model, with only a few extreme data points having to be excluded. Outcomes of the model were further supported by a thorough EBSD characterization.
期刊介绍:
The International Journal of Refractory Metals and Hard Materials (IJRMHM) publishes original research articles concerned with all aspects of refractory metals and hard materials. Refractory metals are defined as metals with melting points higher than 1800 °C. These are tungsten, molybdenum, chromium, tantalum, niobium, hafnium, and rhenium, as well as many compounds and alloys based thereupon. Hard materials that are included in the scope of this journal are defined as materials with hardness values higher than 1000 kg/mm2, primarily intended for applications as manufacturing tools or wear resistant components in mechanical systems. Thus they encompass carbides, nitrides and borides of metals, and related compounds. A special focus of this journal is put on the family of hardmetals, which is also known as cemented tungsten carbide, and cermets which are based on titanium carbide and carbonitrides with or without a metal binder. Ceramics and superhard materials including diamond and cubic boron nitride may also be accepted provided the subject material is presented as hard materials as defined above.