{"title":"Resolvin D1 suppresses macrophage senescence and splenic fibrosis in aged mice","authors":"","doi":"10.1016/j.plefa.2024.102634","DOIUrl":null,"url":null,"abstract":"<div><p>Aging is associated with systemic, non-resolving inflammation and the accumulation of senescent cells. The resolution of inflammation (or inflammation-resolution) is in part mediated by the balance between specialized pro-resolving mediators (SPMs) and pro-inflammatory leukotrienes (LTs). Aged mice (<em>i.e.</em> 2 years of age) exhibit a significant decrease in the SPM:LT ratio in specific organs including the spleen, which suggests that this organ may exhibit heightened inflammation and may be particularly amenable to SPM therapy. Previous studies have shown that resolvin D1 (RvD1) is decreased in spleens of aged mice compared with young controls. Therefore, we asked whether treatment of RvD1 in aged mice would impact markers of cellular senescence in splenic macrophages, and downstream effects on splenic fibrosis, a hallmark of splenic aging. We found that in aged mice, both zymosan-elicited and splenic macrophages showed an increase in mRNA expression of inflammatory and eicosanoid biosynthesis genes and a dysregulation of genes involved in the cell cycle. Injections with RvD1 reversed these changes. Importantly, RvD1 also decreased splenic fibrosis, a hallmark of splenic aging. Our findings suggest that RvD1 treatment may limit several features of aging, including senescence and fibrosis in spleens from aged mice.</p><p>Summary</p><p>Aging is associated with systemic, low grade, non-resolving inflammation. The resolution of inflammation is in part mediated by the balance between specialized pro-resolving mediators (SPMs) and pro-inflammatory lipid mediators, like leukotrienes (LTs). A hallmark of aging is the accumulation of senescent cells that promote low grade inflammation by secreting pro-inflammatory cytokines and lipid mediators. Splenic macrophages contribute to systemic aging, and spleens of aged mice demonstrate decreased levels of the SPM called resolvin D1 (RvD1). Whether addition of RvD1 is protective in spleens of aged mice is unknown and is focus of this study. RvD1 treatment to aged mice led to decreased mRNA expression of markers of cellular senescence and inflammation in splenic macrophages compared with age-matched vehicle controls. Moreover, RvD1 decreased splenic fibrosis, which occurs due to persistent low-grade inflammation in aging. Promoting inflammation resolution with RvD1 thus limits macrophage senescence, pro-inflammatory signals and established splenic fibrosis in aging.</p></div>","PeriodicalId":94179,"journal":{"name":"Prostaglandins, leukotrienes, and essential fatty acids","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0952327824000280/pdfft?md5=ca1753c7b731d8b4498be533e5a9a91e&pid=1-s2.0-S0952327824000280-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Prostaglandins, leukotrienes, and essential fatty acids","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0952327824000280","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Aging is associated with systemic, non-resolving inflammation and the accumulation of senescent cells. The resolution of inflammation (or inflammation-resolution) is in part mediated by the balance between specialized pro-resolving mediators (SPMs) and pro-inflammatory leukotrienes (LTs). Aged mice (i.e. 2 years of age) exhibit a significant decrease in the SPM:LT ratio in specific organs including the spleen, which suggests that this organ may exhibit heightened inflammation and may be particularly amenable to SPM therapy. Previous studies have shown that resolvin D1 (RvD1) is decreased in spleens of aged mice compared with young controls. Therefore, we asked whether treatment of RvD1 in aged mice would impact markers of cellular senescence in splenic macrophages, and downstream effects on splenic fibrosis, a hallmark of splenic aging. We found that in aged mice, both zymosan-elicited and splenic macrophages showed an increase in mRNA expression of inflammatory and eicosanoid biosynthesis genes and a dysregulation of genes involved in the cell cycle. Injections with RvD1 reversed these changes. Importantly, RvD1 also decreased splenic fibrosis, a hallmark of splenic aging. Our findings suggest that RvD1 treatment may limit several features of aging, including senescence and fibrosis in spleens from aged mice.
Summary
Aging is associated with systemic, low grade, non-resolving inflammation. The resolution of inflammation is in part mediated by the balance between specialized pro-resolving mediators (SPMs) and pro-inflammatory lipid mediators, like leukotrienes (LTs). A hallmark of aging is the accumulation of senescent cells that promote low grade inflammation by secreting pro-inflammatory cytokines and lipid mediators. Splenic macrophages contribute to systemic aging, and spleens of aged mice demonstrate decreased levels of the SPM called resolvin D1 (RvD1). Whether addition of RvD1 is protective in spleens of aged mice is unknown and is focus of this study. RvD1 treatment to aged mice led to decreased mRNA expression of markers of cellular senescence and inflammation in splenic macrophages compared with age-matched vehicle controls. Moreover, RvD1 decreased splenic fibrosis, which occurs due to persistent low-grade inflammation in aging. Promoting inflammation resolution with RvD1 thus limits macrophage senescence, pro-inflammatory signals and established splenic fibrosis in aging.