Adapted Chatterjee correlation coefficient

Pub Date : 2024-08-10 DOI:10.1016/j.spl.2024.110241
Ya Wang , Linjiajie Fang , Bingyi Jing
{"title":"Adapted Chatterjee correlation coefficient","authors":"Ya Wang ,&nbsp;Linjiajie Fang ,&nbsp;Bingyi Jing","doi":"10.1016/j.spl.2024.110241","DOIUrl":null,"url":null,"abstract":"<div><p>The need to accurately quantify dependence between random variables is a growing concern across various academic disciplines. Current correlation coefficients are typically intended for one of two purposes: testing independence or measuring relationship strength. Despite some attempts to address both aspects, the performance of these measures is still easily affected by oscillation and local noise. To address these limitations, we propose a new coefficient of correlation called the Adapted Chatterjee Correlation Coefficient <span><math><mrow><mo>(</mo><mi>A</mi><msup><mrow><mi>C</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>)</mo></mrow></math></span>. <span><math><mrow><mi>A</mi><msup><mrow><mi>C</mi></mrow><mrow><mn>3</mn></mrow></msup></mrow></math></span> is designed to accurately identify both independence and functional dependence between variables, even in the presence of noise. We establish the consistency and asymptotic theories of <span><math><mrow><mo>(</mo><mi>A</mi><msup><mrow><mi>C</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>)</mo></mrow></math></span>. Additionally, we present a novel method, called Iterative Signal Detection Procedure (ISDP), for local signal identification. Our numerical studies and real data application demonstrate that <span><math><mrow><mi>A</mi><msup><mrow><mi>C</mi></mrow><mrow><mn>3</mn></mrow></msup></mrow></math></span> outperforms state-of-the-art methods in terms of general performance and detecting local signals.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167715224002104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The need to accurately quantify dependence between random variables is a growing concern across various academic disciplines. Current correlation coefficients are typically intended for one of two purposes: testing independence or measuring relationship strength. Despite some attempts to address both aspects, the performance of these measures is still easily affected by oscillation and local noise. To address these limitations, we propose a new coefficient of correlation called the Adapted Chatterjee Correlation Coefficient (AC3). AC3 is designed to accurately identify both independence and functional dependence between variables, even in the presence of noise. We establish the consistency and asymptotic theories of (AC3). Additionally, we present a novel method, called Iterative Signal Detection Procedure (ISDP), for local signal identification. Our numerical studies and real data application demonstrate that AC3 outperforms state-of-the-art methods in terms of general performance and detecting local signals.

分享
查看原文
经调整的查特吉相关系数
准确量化随机变量之间的依赖关系是各学科日益关注的问题。目前的相关系数通常有两种用途:测试独立性或测量关系强度。尽管有人试图解决这两方面的问题,但这些测量方法的性能仍然很容易受到振荡和局部噪声的影响。为了解决这些局限性,我们提出了一种新的相关系数,称为改编查特吉相关系数(AC3)。AC3 旨在准确识别变量之间的独立性和函数依赖性,即使在存在噪声的情况下也是如此。我们建立了 (AC3) 的一致性和渐近理论。此外,我们还提出了一种用于局部信号识别的新方法,称为迭代信号检测程序(ISDP)。我们的数值研究和实际数据应用证明,AC3 在总体性能和检测局部信号方面优于最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信