Immobilized consortium of heterotrophic nitrifying-aerobic denitrifying bacteria on various matrices for nitrogen removal from synthetic wastewater

IF 4.1 2区 环境科学与生态学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Noushan Hatami, Zahra Etemadifar, Rasoul Shafiei
{"title":"Immobilized consortium of heterotrophic nitrifying-aerobic denitrifying bacteria on various matrices for nitrogen removal from synthetic wastewater","authors":"Noushan Hatami,&nbsp;Zahra Etemadifar,&nbsp;Rasoul Shafiei","doi":"10.1016/j.ibiod.2024.105888","DOIUrl":null,"url":null,"abstract":"<div><p>Environmental contamination by nitrogen compounds such as ammonium and nitrate has increased extensively in the recent past, which necessitates the development of eco-friendly remediation technologies. In this study, three matrix types including pumice, aquarium ceramic filter, and calcium alginate beads were used to facilitate nitrogen removal with an immobilized heterotrophic nitrifying-aerobic denitrifying (HNAD) bacterial consortium. The HNAD bacterial consortium was made of <em>Pseudomonas monteilii</em> Nht, <em>Pseudomonas mendocina</em> AquaN, <em>Rhodococcus erythropolis</em> R1, and <em>Acinetobacter calcoaceticus</em> SCC2. The quality parameters for immobilization, such as the number of immobilized cells and their viability, were assessed. The highest number of bacterial cells (3.4 × 10 <sup>9</sup>) was immobilized on the aquarium ceramic filter, with 53% cell viability at 30°Ⅽ for two months. Pumice, aquarium ceramic filter, and calcium alginate achieved NH<sub>4</sub><sup>+</sup>-N removal efficiencies of 85.3 ± 1.7%, 87.3 ± 2.2%, and 77.5 ± 3.99% within 24 h, respectively, and removed NO<sub>3</sub><sup>−</sup>-N by 88.23 ± 0.36%, 93.95 ± 0.00%, and 71.29 ± 6.49% over 60 h. Additionally, immobilized cells on pumice and ceramic filter retained up to 84% of NH<sub>4</sub><sup>+</sup>-N removal efficiency after 14 reuse cycles. These findings indicate that the immobilized HNAD bacterial consortium on the aquarium ceramic filter can be used as a suitable biofilter for treatment of high nitrogen wastewater.</p></div>","PeriodicalId":13643,"journal":{"name":"International Biodeterioration & Biodegradation","volume":"195 ","pages":"Article 105888"},"PeriodicalIF":4.1000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Biodeterioration & Biodegradation","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0964830524001598","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Environmental contamination by nitrogen compounds such as ammonium and nitrate has increased extensively in the recent past, which necessitates the development of eco-friendly remediation technologies. In this study, three matrix types including pumice, aquarium ceramic filter, and calcium alginate beads were used to facilitate nitrogen removal with an immobilized heterotrophic nitrifying-aerobic denitrifying (HNAD) bacterial consortium. The HNAD bacterial consortium was made of Pseudomonas monteilii Nht, Pseudomonas mendocina AquaN, Rhodococcus erythropolis R1, and Acinetobacter calcoaceticus SCC2. The quality parameters for immobilization, such as the number of immobilized cells and their viability, were assessed. The highest number of bacterial cells (3.4 × 10 9) was immobilized on the aquarium ceramic filter, with 53% cell viability at 30°Ⅽ for two months. Pumice, aquarium ceramic filter, and calcium alginate achieved NH4+-N removal efficiencies of 85.3 ± 1.7%, 87.3 ± 2.2%, and 77.5 ± 3.99% within 24 h, respectively, and removed NO3-N by 88.23 ± 0.36%, 93.95 ± 0.00%, and 71.29 ± 6.49% over 60 h. Additionally, immobilized cells on pumice and ceramic filter retained up to 84% of NH4+-N removal efficiency after 14 reuse cycles. These findings indicate that the immobilized HNAD bacterial consortium on the aquarium ceramic filter can be used as a suitable biofilter for treatment of high nitrogen wastewater.

在各种基质上固定化异养硝化-好氧反硝化菌群,以去除合成废水中的氮
近年来,铵和硝酸盐等氮化合物对环境的污染日益严重,因此有必要开发生态友好型修复技术。本研究利用浮石、水族馆陶瓷过滤器和海藻酸钙珠等三种基质类型,通过固定化异养硝化-好氧反硝化(HNAD)细菌群促进脱氮。HNAD 复合菌群由假单胞菌 Monteilii Nht、假单胞菌 mendocina AquaN、红球菌 Rhodococcus erythropolis R1 和醋酸钙化杆菌 Acinetobacter calcoaceticus SCC2 组成。评估了固定化的质量参数,如固定化细胞的数量和活力。固定在水族陶瓷过滤器上的细菌细胞数量最多(3.4 × 10 9),在 30°Ⅽ 条件下两个月的细胞存活率为 53%。浮石、水族陶瓷过滤器和海藻酸钙在 24 小时内对 NH4+-N 的去除率分别为 85.3 ± 1.7%、87.3 ± 2.2% 和 77.5 ± 3.99%,60 小时内对 NO3-N 的去除率分别为 88.23 ± 0.36%、93.95 ± 0.00% 和 71.29 ± 6.49%。这些研究结果表明,水族馆陶瓷过滤器上的固定化 HNAD 细菌群可用作处理高氮废水的合适生物滤池。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.60
自引率
10.40%
发文量
107
审稿时长
21 days
期刊介绍: International Biodeterioration and Biodegradation publishes original research papers and reviews on the biological causes of deterioration or degradation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信