{"title":"The cooling effect of trees in high-rise building complexes in relation to spatial distance from buildings","authors":"","doi":"10.1016/j.scs.2024.105737","DOIUrl":null,"url":null,"abstract":"<div><p>Street trees are vital in mitigating urban heat islands, with their cooling effect significantly influenced by the urban layout. Past studies explored how urban canyon characteristics—aspect ratio, building coverage—affect tree cooling, yet seldom analyzed the impact of distance between trees and buildings. Addressing this, our study evaluates tree cooling effects concerning their proximity to shaded and sunlit walls. The findings highlight that cooling effectiveness varies with the ratio of distance from the shaded wall to building height (<span><math><msub><mi>D</mi><mrow><mi>s</mi><mi>h</mi><mi>a</mi></mrow></msub></math></span>:H), peaking within a ratio range of 0.55 to 0.7. Below a ratio of 0.3, effectiveness decreases to 9–29 %, emphasizing the importance of strategic planting distances. The result shows that when planted at an optimal distance from buildings, small trees can produce similar radiation mitigation effects to those of larger trees. This discovery advocates for thoughtful tree placement in high-density areas, optimally leveraging their shade and evapotranspiration benefits. The study provides actionable insights for urban planners and landscape architects, suggesting that careful consideration of tree placement relative to building shadows can significantly improve urban climates, offering a strategic approach to deploying green infrastructure in high-rise complexes for enhanced climate resilience.</p></div>","PeriodicalId":48659,"journal":{"name":"Sustainable Cities and Society","volume":null,"pages":null},"PeriodicalIF":10.5000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Cities and Society","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2210670724005626","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Street trees are vital in mitigating urban heat islands, with their cooling effect significantly influenced by the urban layout. Past studies explored how urban canyon characteristics—aspect ratio, building coverage—affect tree cooling, yet seldom analyzed the impact of distance between trees and buildings. Addressing this, our study evaluates tree cooling effects concerning their proximity to shaded and sunlit walls. The findings highlight that cooling effectiveness varies with the ratio of distance from the shaded wall to building height (:H), peaking within a ratio range of 0.55 to 0.7. Below a ratio of 0.3, effectiveness decreases to 9–29 %, emphasizing the importance of strategic planting distances. The result shows that when planted at an optimal distance from buildings, small trees can produce similar radiation mitigation effects to those of larger trees. This discovery advocates for thoughtful tree placement in high-density areas, optimally leveraging their shade and evapotranspiration benefits. The study provides actionable insights for urban planners and landscape architects, suggesting that careful consideration of tree placement relative to building shadows can significantly improve urban climates, offering a strategic approach to deploying green infrastructure in high-rise complexes for enhanced climate resilience.
期刊介绍:
Sustainable Cities and Society (SCS) is an international journal that focuses on fundamental and applied research to promote environmentally sustainable and socially resilient cities. The journal welcomes cross-cutting, multi-disciplinary research in various areas, including:
1. Smart cities and resilient environments;
2. Alternative/clean energy sources, energy distribution, distributed energy generation, and energy demand reduction/management;
3. Monitoring and improving air quality in built environment and cities (e.g., healthy built environment and air quality management);
4. Energy efficient, low/zero carbon, and green buildings/communities;
5. Climate change mitigation and adaptation in urban environments;
6. Green infrastructure and BMPs;
7. Environmental Footprint accounting and management;
8. Urban agriculture and forestry;
9. ICT, smart grid and intelligent infrastructure;
10. Urban design/planning, regulations, legislation, certification, economics, and policy;
11. Social aspects, impacts and resiliency of cities;
12. Behavior monitoring, analysis and change within urban communities;
13. Health monitoring and improvement;
14. Nexus issues related to sustainable cities and societies;
15. Smart city governance;
16. Decision Support Systems for trade-off and uncertainty analysis for improved management of cities and society;
17. Big data, machine learning, and artificial intelligence applications and case studies;
18. Critical infrastructure protection, including security, privacy, forensics, and reliability issues of cyber-physical systems.
19. Water footprint reduction and urban water distribution, harvesting, treatment, reuse and management;
20. Waste reduction and recycling;
21. Wastewater collection, treatment and recycling;
22. Smart, clean and healthy transportation systems and infrastructure;