{"title":"Influence of structure parameters on the tribological properties of MoB/Cu laminated composites","authors":"","doi":"10.1016/j.wear.2024.205549","DOIUrl":null,"url":null,"abstract":"<div><p>Strong-bonding MoB/Cu laminated (MCL) composites are fabricated by the hot-press method at 1030 °C for 1 h under 20 MPa pressure. The microstructure, tribological properties, and elemental microanalysis are systematically investigated. The structure parameters of laminated composites play a key role in the properties of friction and wear resistance. The average friction coefficient is below 0.3 and the wear rate is almost one order of magnitude lower when the measured ratio of copper thickness to MoB thickness is below 4, compared with the sample whose λ equals 13. The primary phases of MCL are Al<sub>2</sub>O<sub>3</sub>, Cu(Al), and MoB. They helped the lubricating film to form on the worn surface during the wear process. These tribo-films effectively moderate the wear while safeguarding the metal matrix.</p></div>","PeriodicalId":23970,"journal":{"name":"Wear","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wear","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0043164824003144","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Strong-bonding MoB/Cu laminated (MCL) composites are fabricated by the hot-press method at 1030 °C for 1 h under 20 MPa pressure. The microstructure, tribological properties, and elemental microanalysis are systematically investigated. The structure parameters of laminated composites play a key role in the properties of friction and wear resistance. The average friction coefficient is below 0.3 and the wear rate is almost one order of magnitude lower when the measured ratio of copper thickness to MoB thickness is below 4, compared with the sample whose λ equals 13. The primary phases of MCL are Al2O3, Cu(Al), and MoB. They helped the lubricating film to form on the worn surface during the wear process. These tribo-films effectively moderate the wear while safeguarding the metal matrix.
期刊介绍:
Wear journal is dedicated to the advancement of basic and applied knowledge concerning the nature of wear of materials. Broadly, topics of interest range from development of fundamental understanding of the mechanisms of wear to innovative solutions to practical engineering problems. Authors of experimental studies are expected to comment on the repeatability of the data, and whenever possible, conduct multiple measurements under similar testing conditions. Further, Wear embraces the highest standards of professional ethics, and the detection of matching content, either in written or graphical form, from other publications by the current authors or by others, may result in rejection.