Katherine E. Plass*, J. Kenneth Krebs, Jennifer L. Morford, Raymond E. Schaak, Joshua J. Stapleton and Adri C. T. van Duin,
{"title":"Nanomaterials Research at a Primarily Undergraduate Institution: Transforming Nanorods, Undergraduate Research Communities, and Infrastructure","authors":"Katherine E. Plass*, J. Kenneth Krebs, Jennifer L. Morford, Raymond E. Schaak, Joshua J. Stapleton and Adri C. T. van Duin, ","doi":"10.1021/acsnanoscienceau.4c0000510.1021/acsnanoscienceau.4c00005","DOIUrl":null,"url":null,"abstract":"<p >Undergraduate research transforms student’s conceptions of themselves as scientists and encourages participation and retention in science, technology, engineering, and mathematics (STEM) fields. Many barriers exist to carrying out scientifically impactful undergraduate research in nanomaterials at primarily undergraduate institutions (PUIs). Here, we share several practices and design principles that demonstrate pathways to overcome these barriers. Design of modular research projects with low entry barriers is essential. Postsynthetic transformation of nanoparticles is a field that enables such design and has been used successfully to advance nanoscience research while being achievable within undergraduate laboratories. Relatively large, inclusive research communities can be supported through the creation of opportunities with peer- and near-peer mentoring. We also share emerging strategies for enabling routine undergraduate access to transmission electron microscopy, which is one of the most mainstream characterization techniques in nanoscience yet is frequently absent from the infrastructure at undergraduate-focused institutions.</p>","PeriodicalId":29799,"journal":{"name":"ACS Nanoscience Au","volume":"4 4","pages":"223–234 223–234"},"PeriodicalIF":4.8000,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsnanoscienceau.4c00005","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nanoscience Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsnanoscienceau.4c00005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Undergraduate research transforms student’s conceptions of themselves as scientists and encourages participation and retention in science, technology, engineering, and mathematics (STEM) fields. Many barriers exist to carrying out scientifically impactful undergraduate research in nanomaterials at primarily undergraduate institutions (PUIs). Here, we share several practices and design principles that demonstrate pathways to overcome these barriers. Design of modular research projects with low entry barriers is essential. Postsynthetic transformation of nanoparticles is a field that enables such design and has been used successfully to advance nanoscience research while being achievable within undergraduate laboratories. Relatively large, inclusive research communities can be supported through the creation of opportunities with peer- and near-peer mentoring. We also share emerging strategies for enabling routine undergraduate access to transmission electron microscopy, which is one of the most mainstream characterization techniques in nanoscience yet is frequently absent from the infrastructure at undergraduate-focused institutions.
期刊介绍:
ACS Nanoscience Au is an open access journal that publishes original fundamental and applied research on nanoscience and nanotechnology research at the interfaces of chemistry biology medicine materials science physics and engineering.The journal publishes short letters comprehensive articles reviews and perspectives on all aspects of nanoscience and nanotechnology:synthesis assembly characterization theory modeling and simulation of nanostructures nanomaterials and nanoscale devicesdesign fabrication and applications of organic inorganic polymer hybrid and biological nanostructuresexperimental and theoretical studies of nanoscale chemical physical and biological phenomenamethods and tools for nanoscience and nanotechnologyself- and directed-assemblyzero- one- and two-dimensional materialsnanostructures and nano-engineered devices with advanced performancenanobiotechnologynanomedicine and nanotoxicologyACS Nanoscience Au also publishes original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials engineering physics bioscience and chemistry into important applications of nanomaterials.