Distinct melanocyte subpopulations defined by stochastic expression of proliferation or maturation programs enable a rapid and sustainable pigmentation response.

IF 9.8 1区 生物学 Q1 Agricultural and Biological Sciences
PLoS Biology Pub Date : 2024-08-20 eCollection Date: 2024-08-01 DOI:10.1371/journal.pbio.3002776
Ayush Aggarwal, Ayesha Nasreen, Babita Sharma, Sarthak Sahoo, Keerthic Aswin, Mohammed Faruq, Rajesh Pandey, Mohit K Jolly, Abhyudai Singh, Rajesh S Gokhale, Vivek T Natarajan
{"title":"Distinct melanocyte subpopulations defined by stochastic expression of proliferation or maturation programs enable a rapid and sustainable pigmentation response.","authors":"Ayush Aggarwal, Ayesha Nasreen, Babita Sharma, Sarthak Sahoo, Keerthic Aswin, Mohammed Faruq, Rajesh Pandey, Mohit K Jolly, Abhyudai Singh, Rajesh S Gokhale, Vivek T Natarajan","doi":"10.1371/journal.pbio.3002776","DOIUrl":null,"url":null,"abstract":"<p><p>The ultraviolet (UV) radiation triggers a pigmentation response in human skin, wherein, melanocytes rapidly activate divergent maturation and proliferation programs. Using single-cell sequencing, we demonstrate that these 2 programs are segregated in distinct subpopulations in melanocytes of human and zebrafish skin. The coexistence of these 2 cell states in cultured melanocytes suggests possible cell autonomy. Luria-Delbrück fluctuation test reveals that the initial establishment of these states is stochastic. Tracking of pigmenting cells ascertains that the stochastically acquired state is faithfully propagated in the progeny. A systemic approach combining single-cell multi-omics (RNA+ATAC) coupled to enhancer mapping with H3K27 acetylation successfully identified state-specific transcriptional networks. This comprehensive analysis led to the construction of a gene regulatory network (GRN) that under the influence of noise, establishes a bistable system of pigmentation and proliferation at the population level. This GRN recapitulates melanocyte behaviour in response to external cues that reinforce either of the states. Our work highlights that inherent stochasticity within melanocytes establishes dedicated states, and the mature state is sustained by selective enhancers mark through histone acetylation. While the initial cue triggers a proliferation response, the continued signal activates and maintains the pigmenting subpopulation via epigenetic imprinting. Thereby our study provides the basis of coexistence of distinct populations which ensures effective pigmentation response while preserving the self-renewal capacity.</p>","PeriodicalId":49001,"journal":{"name":"PLoS Biology","volume":null,"pages":null},"PeriodicalIF":9.8000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11364419/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pbio.3002776","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

The ultraviolet (UV) radiation triggers a pigmentation response in human skin, wherein, melanocytes rapidly activate divergent maturation and proliferation programs. Using single-cell sequencing, we demonstrate that these 2 programs are segregated in distinct subpopulations in melanocytes of human and zebrafish skin. The coexistence of these 2 cell states in cultured melanocytes suggests possible cell autonomy. Luria-Delbrück fluctuation test reveals that the initial establishment of these states is stochastic. Tracking of pigmenting cells ascertains that the stochastically acquired state is faithfully propagated in the progeny. A systemic approach combining single-cell multi-omics (RNA+ATAC) coupled to enhancer mapping with H3K27 acetylation successfully identified state-specific transcriptional networks. This comprehensive analysis led to the construction of a gene regulatory network (GRN) that under the influence of noise, establishes a bistable system of pigmentation and proliferation at the population level. This GRN recapitulates melanocyte behaviour in response to external cues that reinforce either of the states. Our work highlights that inherent stochasticity within melanocytes establishes dedicated states, and the mature state is sustained by selective enhancers mark through histone acetylation. While the initial cue triggers a proliferation response, the continued signal activates and maintains the pigmenting subpopulation via epigenetic imprinting. Thereby our study provides the basis of coexistence of distinct populations which ensures effective pigmentation response while preserving the self-renewal capacity.

通过随机表达增殖或成熟程序来定义不同的黑色素细胞亚群,可实现快速、可持续的色素沉着反应。
紫外线(UV)辐射会引发人类皮肤的色素沉着反应,其中黑色素细胞会迅速激活不同的成熟和增殖程序。通过单细胞测序,我们证明这两种程序在人类和斑马鱼皮肤的黑色素细胞中以不同的亚群分离。这两种细胞状态在培养的黑色素细胞中共存,表明细胞可能具有自主性。Luria-Delbrück波动测试表明,这些状态的初始建立是随机的。对色素沉着细胞的追踪证实,随机获得的状态会在后代中忠实地传播。将单细胞多组学(RNA+ATAC)与增强子图谱和 H3K27 乙酰化相结合的系统方法成功地确定了特定状态的转录网络。通过这种综合分析,我们构建了一个基因调控网络(GRN),在噪声的影响下,该网络在群体水平上建立了一个色素沉着和增殖的双稳态系统。这个基因调控网络再现了黑色素细胞在外界刺激下的行为,这些刺激会强化其中任何一种状态。我们的研究突出表明,黑色素细胞内固有的随机性建立了专用状态,而成熟状态则通过组蛋白乙酰化标记的选择性增强子来维持。最初的提示触发了增殖反应,而持续的信号则通过表观遗传印记激活并维持色素沉着亚群。因此,我们的研究为不同种群的共存提供了基础,从而确保了有效的色素沉着反应,同时保留了自我更新能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
PLoS Biology
PLoS Biology BIOCHEMISTRY & MOLECULAR BIOLOGY-BIOLOGY
CiteScore
15.40
自引率
2.00%
发文量
359
审稿时长
3-8 weeks
期刊介绍: PLOS Biology is the flagship journal of the Public Library of Science (PLOS) and focuses on publishing groundbreaking and relevant research in all areas of biological science. The journal features works at various scales, ranging from molecules to ecosystems, and also encourages interdisciplinary studies. PLOS Biology publishes articles that demonstrate exceptional significance, originality, and relevance, with a high standard of scientific rigor in methodology, reporting, and conclusions. The journal aims to advance science and serve the research community by transforming research communication to align with the research process. It offers evolving article types and policies that empower authors to share the complete story behind their scientific findings with a diverse global audience of researchers, educators, policymakers, patient advocacy groups, and the general public. PLOS Biology, along with other PLOS journals, is widely indexed by major services such as Crossref, Dimensions, DOAJ, Google Scholar, PubMed, PubMed Central, Scopus, and Web of Science. Additionally, PLOS Biology is indexed by various other services including AGRICOLA, Biological Abstracts, BIOSYS Previews, CABI CAB Abstracts, CABI Global Health, CAPES, CAS, CNKI, Embase, Journal Guide, MEDLINE, and Zoological Record, ensuring that the research content is easily accessible and discoverable by a wide range of audiences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信