{"title":"Design modification and selection of improved stem design of the conical stem tibial implant for TAR using FE analysis and different MCDM methods.","authors":"Jyoti, Rajesh Ghosh","doi":"10.1177/09544119241272839","DOIUrl":null,"url":null,"abstract":"<p><p>The conical stem tibial design of total ankle replacement (TAR) has high implant-bone micromotion. This may lead to aseptic loosening which can be avoided by improving the tibial design. The objective was to propose the best stem design parameters to reduce implant-bone micromotion along with minimizing stress shielding using an integrated Finite Element-Multi Criteria Decision Making (FE-MCDM) approach. FE models of implanted tibia bones were prepared by changing the height of the stem, the diameter of the stem, and the slant of the stem. Weighted Aggregated Sum Product Assessment (WASPAS), Technique for Order of Preference by Similarities to Ideal Solution (TOPSIS), Evaluation based on Distance from Average Solution (EDAS), and VIseKriterijumska Optimizacija I Kompromisno Resenje (VIKOR) MCDM techniques with equal weights for micromotion and stress shielding were considered. The micromotion and stress shielding were greater when the height of the stem was increased. Whereas, the increase in diameter and slant affected them marginally. The best-performing design was the Model with stem height 6 mm (diameter 6.4 mm and slant 4°) and after that was the Model with stem height 8 mm (diameter 6.4 mm and slant 4°), and then the Model with stem height 10 mm (diameter 6.4 mm and slant 4°). The height of the stem is the most important stem design parameter. Shorter height, moderate thickness, and moderate slanting stem designs are recommended.</p>","PeriodicalId":20666,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine","volume":" ","pages":"874-885"},"PeriodicalIF":1.7000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/09544119241272839","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/20 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The conical stem tibial design of total ankle replacement (TAR) has high implant-bone micromotion. This may lead to aseptic loosening which can be avoided by improving the tibial design. The objective was to propose the best stem design parameters to reduce implant-bone micromotion along with minimizing stress shielding using an integrated Finite Element-Multi Criteria Decision Making (FE-MCDM) approach. FE models of implanted tibia bones were prepared by changing the height of the stem, the diameter of the stem, and the slant of the stem. Weighted Aggregated Sum Product Assessment (WASPAS), Technique for Order of Preference by Similarities to Ideal Solution (TOPSIS), Evaluation based on Distance from Average Solution (EDAS), and VIseKriterijumska Optimizacija I Kompromisno Resenje (VIKOR) MCDM techniques with equal weights for micromotion and stress shielding were considered. The micromotion and stress shielding were greater when the height of the stem was increased. Whereas, the increase in diameter and slant affected them marginally. The best-performing design was the Model with stem height 6 mm (diameter 6.4 mm and slant 4°) and after that was the Model with stem height 8 mm (diameter 6.4 mm and slant 4°), and then the Model with stem height 10 mm (diameter 6.4 mm and slant 4°). The height of the stem is the most important stem design parameter. Shorter height, moderate thickness, and moderate slanting stem designs are recommended.
期刊介绍:
The Journal of Engineering in Medicine is an interdisciplinary journal encompassing all aspects of engineering in medicine. The Journal is a vital tool for maintaining an understanding of the newest techniques and research in medical engineering.