Jussi Jylkkä, Zachary Stickley, Daniel Fellman, Otto Waris, Liisa Ritakallio, Todd D Little, Juha Salmi, Matti Laine
{"title":"From task-general towards task-specific cognitive operations in a few minutes? Working memory performance as an adaptive process.","authors":"Jussi Jylkkä, Zachary Stickley, Daniel Fellman, Otto Waris, Liisa Ritakallio, Todd D Little, Juha Salmi, Matti Laine","doi":"10.1177/17470218241278272","DOIUrl":null,"url":null,"abstract":"<p><p>Measurement of cognitive functions is typically based on the implicit assumption that the mental architecture underlying cognitive task performance is constant throughout the task. In contrast, skill learning theory implies that cognitively demanding task performance is an adaptive process that progresses from initial heavy engagement of effortful and task-general metacognitive and executive control processes towards more automatic and task-specific performance. However, this hypothesis is rarely applied to the short time spans of traditional cognitive tasks such as working memory (WM) tasks. We utilised longitudinal structural equation models on two well-powered data sets to test the hypothesis that the initial stages of WM task performances load heavily on a task-general g-factor and then start to diverge towards factors specific to task structure. In line with the hypothesis, data from the first experiment (<i>N</i> = 296) were successfully fitted in a model with task-initial unity of the WM paradigm-specific latent factors, after which their intercorrelations started to diverge. The second experiment (<i>N</i> = 201) replicated this pattern except for one paradigm-specific latent factor. These preliminary results suggest that the processes underlying WM task performance tend to progress rapidly from more task-general towards task-specific, in line with the cognitive skill learning framework. Such task-internal dynamics has important implications for the measurement of complex cognitive functions.</p>","PeriodicalId":20869,"journal":{"name":"Quarterly Journal of Experimental Psychology","volume":" ","pages":"17470218241278272"},"PeriodicalIF":1.5000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quarterly Journal of Experimental Psychology","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1177/17470218241278272","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Measurement of cognitive functions is typically based on the implicit assumption that the mental architecture underlying cognitive task performance is constant throughout the task. In contrast, skill learning theory implies that cognitively demanding task performance is an adaptive process that progresses from initial heavy engagement of effortful and task-general metacognitive and executive control processes towards more automatic and task-specific performance. However, this hypothesis is rarely applied to the short time spans of traditional cognitive tasks such as working memory (WM) tasks. We utilised longitudinal structural equation models on two well-powered data sets to test the hypothesis that the initial stages of WM task performances load heavily on a task-general g-factor and then start to diverge towards factors specific to task structure. In line with the hypothesis, data from the first experiment (N = 296) were successfully fitted in a model with task-initial unity of the WM paradigm-specific latent factors, after which their intercorrelations started to diverge. The second experiment (N = 201) replicated this pattern except for one paradigm-specific latent factor. These preliminary results suggest that the processes underlying WM task performance tend to progress rapidly from more task-general towards task-specific, in line with the cognitive skill learning framework. Such task-internal dynamics has important implications for the measurement of complex cognitive functions.
期刊介绍:
Promoting the interests of scientific psychology and its researchers, QJEP, the journal of the Experimental Psychology Society, is a leading journal with a long-standing tradition of publishing cutting-edge research. Several articles have become classic papers in the fields of attention, perception, learning, memory, language, and reasoning. The journal publishes original articles on any topic within the field of experimental psychology (including comparative research). These include substantial experimental reports, review papers, rapid communications (reporting novel techniques or ground breaking results), comments (on articles previously published in QJEP or on issues of general interest to experimental psychologists), and book reviews. Experimental results are welcomed from all relevant techniques, including behavioural testing, brain imaging and computational modelling.
QJEP offers a competitive publication time-scale. Accepted Rapid Communications have priority in the publication cycle and usually appear in print within three months. We aim to publish all accepted (but uncorrected) articles online within seven days. Our Latest Articles page offers immediate publication of articles upon reaching their final form.
The journal offers an open access option called Open Select, enabling authors to meet funder requirements to make their article free to read online for all in perpetuity. Authors also benefit from a broad and diverse subscription base that delivers the journal contents to a world-wide readership. Together these features ensure that the journal offers authors the opportunity to raise the visibility of their work to a global audience.