Sharon J Feng, François Voruz, Stephen Leong, Daniella R Hammer, Eugénie Breil, Aykut Aksit, Michelle Yu, Lauren Chiriboga, Elizabeth S Olson, Jeffrey W Kysar, Anil K Lalwani
{"title":"Microneedle-Mediated Delivery of siRNA via Liposomal-Based Transfection for Inner Ear Gene Therapy.","authors":"Sharon J Feng, François Voruz, Stephen Leong, Daniella R Hammer, Eugénie Breil, Aykut Aksit, Michelle Yu, Lauren Chiriboga, Elizabeth S Olson, Jeffrey W Kysar, Anil K Lalwani","doi":"10.1097/MAO.0000000000004297","DOIUrl":null,"url":null,"abstract":"<p><strong>Hypothesis: </strong>Microneedle-mediated intracochlear injection of siRNA-Lipofectamine through the round window membrane (RWM) can be used to transfect cells within the cochlea.</p><p><strong>Background: </strong>Our laboratory has developed 100-μm diameter hollow microneedles for intracochlear injection through the guinea pig RWM. In this study, we test the feasibility of microneedle-mediated injection of siRNA and Lipofectamine, a commonly used reagent with known cellular toxicity, through the RWM for cochlear transfection.</p><p><strong>Methods: </strong>Fluorescently labeled scramble siRNA was diluted into Lipofectamine RNAiMax and OptiMEM. One microliter of 5 μM siRNA was injected through the RWM of Hartley guinea pigs at a rate of 1 μl/min (n = 22). In a control group, 1.0 μl of Lipofectamine, with no siRNA, was diluted into OptiMEM and injected in a similar fashion (n = 5). Hearing tests were performed before and either at 24 hours, 48 hours, or 5 days after injection. Afterward, animals were euthanized, and cochleae were harvested for imaging. Control cochleae were processed in parallel to untreated guinea pigs.</p><p><strong>Results: </strong>Fluorescence, indicating successful transfection, was observed within the basal and middle turns of the cochlea with limited distribution in the apex at 24 and 48 hours. Signal was most intense in the organ of Corti, spiral ligament, and spiral ganglion. Little to no fluorescence was observed at 5 days post-injection. No significant changes in auditory brainstem response (ABR) were noted post-perforation at 5 days, suggesting that siRNA-Lipofectamine at low doses does not cause cochlear toxicity.</p><p><strong>Conclusions: </strong>Small volumes of siRNA and Lipofectamine can be effectively delivered to cochlear structures using microneedles, paving the way for atraumatic cochlear gene therapy.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/MAO.0000000000004297","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/21 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Hypothesis: Microneedle-mediated intracochlear injection of siRNA-Lipofectamine through the round window membrane (RWM) can be used to transfect cells within the cochlea.
Background: Our laboratory has developed 100-μm diameter hollow microneedles for intracochlear injection through the guinea pig RWM. In this study, we test the feasibility of microneedle-mediated injection of siRNA and Lipofectamine, a commonly used reagent with known cellular toxicity, through the RWM for cochlear transfection.
Methods: Fluorescently labeled scramble siRNA was diluted into Lipofectamine RNAiMax and OptiMEM. One microliter of 5 μM siRNA was injected through the RWM of Hartley guinea pigs at a rate of 1 μl/min (n = 22). In a control group, 1.0 μl of Lipofectamine, with no siRNA, was diluted into OptiMEM and injected in a similar fashion (n = 5). Hearing tests were performed before and either at 24 hours, 48 hours, or 5 days after injection. Afterward, animals were euthanized, and cochleae were harvested for imaging. Control cochleae were processed in parallel to untreated guinea pigs.
Results: Fluorescence, indicating successful transfection, was observed within the basal and middle turns of the cochlea with limited distribution in the apex at 24 and 48 hours. Signal was most intense in the organ of Corti, spiral ligament, and spiral ganglion. Little to no fluorescence was observed at 5 days post-injection. No significant changes in auditory brainstem response (ABR) were noted post-perforation at 5 days, suggesting that siRNA-Lipofectamine at low doses does not cause cochlear toxicity.
Conclusions: Small volumes of siRNA and Lipofectamine can be effectively delivered to cochlear structures using microneedles, paving the way for atraumatic cochlear gene therapy.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.