Bacterial nanotechnology as a paradigm in targeted cancer therapeutic delivery and immunotherapy.

IF 7.3 1区 工程技术 Q1 INSTRUMENTS & INSTRUMENTATION
Microsystems & Nanoengineering Pub Date : 2024-08-20 eCollection Date: 2024-01-01 DOI:10.1038/s41378-024-00743-z
Ahmad Gholami, Milad Mohkam, Saeede Soleimanian, Mohammad Sadraeian, Antonio Lauto
{"title":"Bacterial nanotechnology as a paradigm in targeted cancer therapeutic delivery and immunotherapy.","authors":"Ahmad Gholami, Milad Mohkam, Saeede Soleimanian, Mohammad Sadraeian, Antonio Lauto","doi":"10.1038/s41378-024-00743-z","DOIUrl":null,"url":null,"abstract":"<p><p>Cancer, a multifaceted and diverse ailment, presents formidable obstacles to traditional treatment modalities. Nanotechnology presents novel prospects for surmounting these challenges through its capacity to facilitate meticulous and regulated administration of therapeutic agents to malignant cells while concurrently modulating the immune system to combat neoplasms. Bacteria and their derivatives have emerged as highly versatile and multifunctional platforms for cancer nanotherapy within the realm of nanomaterials. This comprehensive review delves into the multifaceted and groundbreaking implementations of bacterial nanotechnology within cancer therapy. This review encompasses four primary facets: the utilization of bacteria as living conveyors of medicinal substances, the employment of bacterial components as agents that stimulate the immune system, the deployment of bacterial vectors as tools for delivering genetic material, and the development of bacteria-derived nano-drugs as intelligent nano-medications. Furthermore, we elucidate the merits and modalities of operation pertaining to these bacterial nano-systems, along with their capacity to synergize with other cutting-edge nanotechnologies, such as CRISPR-Cas systems. Additionally, we offer insightful viewpoints regarding the forthcoming trajectories and prospects within this expanding domain. It is our deduction that bacterial nanotechnology embodies a propitious and innovative paradigm in the realm of cancer therapy, which has the potential to provide numerous advantages and synergistic effects in enhancing the outcomes and quality of life for individuals afflicted with cancer.</p>","PeriodicalId":18560,"journal":{"name":"Microsystems & Nanoengineering","volume":"10 ","pages":"113"},"PeriodicalIF":7.3000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11333603/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microsystems & Nanoengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1038/s41378-024-00743-z","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

Abstract

Cancer, a multifaceted and diverse ailment, presents formidable obstacles to traditional treatment modalities. Nanotechnology presents novel prospects for surmounting these challenges through its capacity to facilitate meticulous and regulated administration of therapeutic agents to malignant cells while concurrently modulating the immune system to combat neoplasms. Bacteria and their derivatives have emerged as highly versatile and multifunctional platforms for cancer nanotherapy within the realm of nanomaterials. This comprehensive review delves into the multifaceted and groundbreaking implementations of bacterial nanotechnology within cancer therapy. This review encompasses four primary facets: the utilization of bacteria as living conveyors of medicinal substances, the employment of bacterial components as agents that stimulate the immune system, the deployment of bacterial vectors as tools for delivering genetic material, and the development of bacteria-derived nano-drugs as intelligent nano-medications. Furthermore, we elucidate the merits and modalities of operation pertaining to these bacterial nano-systems, along with their capacity to synergize with other cutting-edge nanotechnologies, such as CRISPR-Cas systems. Additionally, we offer insightful viewpoints regarding the forthcoming trajectories and prospects within this expanding domain. It is our deduction that bacterial nanotechnology embodies a propitious and innovative paradigm in the realm of cancer therapy, which has the potential to provide numerous advantages and synergistic effects in enhancing the outcomes and quality of life for individuals afflicted with cancer.

Abstract Image

细菌纳米技术作为癌症靶向给药和免疫疗法的典范。
癌症是一种多方面的疾病,对传统治疗方法构成了巨大的障碍。纳米技术能够对恶性细胞进行细致、规范的治疗,同时调节免疫系统以对抗肿瘤,为克服这些挑战带来了新的前景。细菌及其衍生物已成为纳米材料领域中用途广泛、功能多样的癌症纳米疗法平台。本综述深入探讨了细菌纳米技术在癌症治疗中的多方面突破性应用。这篇综述包括四个主要方面:利用细菌作为药用物质的活体输送器、利用细菌成分作为刺激免疫系统的制剂、部署细菌载体作为输送遗传物质的工具,以及开发细菌衍生纳米药物作为智能纳米药物。此外,我们还阐明了这些细菌纳米系统的优点和运作模式,以及它们与 CRISPR-Cas 系统等其他尖端纳米技术的协同能力。此外,我们还对这一不断扩大的领域的未来发展轨迹和前景提出了独到的见解。我们的推断是,细菌纳米技术体现了癌症治疗领域的一种有利的创新范式,它有可能提供众多优势和协同效应,提高癌症患者的治疗效果和生活质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Microsystems & Nanoengineering
Microsystems & Nanoengineering Materials Science-Materials Science (miscellaneous)
CiteScore
12.00
自引率
3.80%
发文量
123
审稿时长
20 weeks
期刊介绍: Microsystems & Nanoengineering is a comprehensive online journal that focuses on the field of Micro and Nano Electro Mechanical Systems (MEMS and NEMS). It provides a platform for researchers to share their original research findings and review articles in this area. The journal covers a wide range of topics, from fundamental research to practical applications. Published by Springer Nature, in collaboration with the Aerospace Information Research Institute, Chinese Academy of Sciences, and with the support of the State Key Laboratory of Transducer Technology, it is an esteemed publication in the field. As an open access journal, it offers free access to its content, allowing readers from around the world to benefit from the latest developments in MEMS and NEMS.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信