{"title":"Latest Research Progress of Liquid Biopsy in Tumor-A Narrative Review.","authors":"Hua Jiang","doi":"10.2147/CMAR.S479338","DOIUrl":null,"url":null,"abstract":"<p><p>Human life expectancy is significantly impacted by cancer, with liquid biopsy emerging as an advantageous method for cancer detection because of its noninvasive nature, high accuracy, ease of sampling, and cost-effectiveness compared with conventional tissue biopsy techniques. Liquid biopsy shows promise in early cancer detection, real-time monitoring, and personalized treatment for various cancers, including lung, cervical, and prostate cancers, and offers innovative approaches for cancer diagnosis and management. By utilizing circulating tumor DNA, circulating tumor cells, and exosomes as biomarkers, liquid biopsy enables the tracking of cancer progression. Various techniques commonly used in life sciences research, such as polymerase chain reaction (PCR), next-generation sequencing (NGS), and droplet digital PCR, are employed to assess cancer progression on the basis of different indicators. This review examines the latest advancements in liquid biopsy markers-circulating tumor DNA (ctDNA), circulating tumor cells (CTCs), and exosomes-for cancer diagnosis over the past three years, with a focus on their detection methodologies and clinical applications. It encapsulates the pivotal aims of liquid biopsy, including early detection, therapy response prediction, treatment monitoring, prognostication, and its relevance in minimal residual disease, while also addressing the challenges facing routine clinical adoption. By combining the latest research advancements and practical clinical experiences, this work focuses on discussing the clinical significance of DNA methylation biomarkers and their applications in tumor screening, auxiliary diagnosis, companion diagnosis, and recurrence monitoring. These discussions may help enhance the application of liquid biopsy throughout the entire process of tumor diagnosis and treatment, thereby providing patients with more precise and effective treatment plans.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":"16 ","pages":"1031-1042"},"PeriodicalIF":4.6000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11335005/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2147/CMAR.S479338","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Human life expectancy is significantly impacted by cancer, with liquid biopsy emerging as an advantageous method for cancer detection because of its noninvasive nature, high accuracy, ease of sampling, and cost-effectiveness compared with conventional tissue biopsy techniques. Liquid biopsy shows promise in early cancer detection, real-time monitoring, and personalized treatment for various cancers, including lung, cervical, and prostate cancers, and offers innovative approaches for cancer diagnosis and management. By utilizing circulating tumor DNA, circulating tumor cells, and exosomes as biomarkers, liquid biopsy enables the tracking of cancer progression. Various techniques commonly used in life sciences research, such as polymerase chain reaction (PCR), next-generation sequencing (NGS), and droplet digital PCR, are employed to assess cancer progression on the basis of different indicators. This review examines the latest advancements in liquid biopsy markers-circulating tumor DNA (ctDNA), circulating tumor cells (CTCs), and exosomes-for cancer diagnosis over the past three years, with a focus on their detection methodologies and clinical applications. It encapsulates the pivotal aims of liquid biopsy, including early detection, therapy response prediction, treatment monitoring, prognostication, and its relevance in minimal residual disease, while also addressing the challenges facing routine clinical adoption. By combining the latest research advancements and practical clinical experiences, this work focuses on discussing the clinical significance of DNA methylation biomarkers and their applications in tumor screening, auxiliary diagnosis, companion diagnosis, and recurrence monitoring. These discussions may help enhance the application of liquid biopsy throughout the entire process of tumor diagnosis and treatment, thereby providing patients with more precise and effective treatment plans.