Weixin Li, Jialuo Tu, Jikai Sun, Yuanbao Zhang, Jiale Fang, Mingda Wang, Xiangyu Liu, Prof. Zhong-Qun Tian, Prof. Feng Ru Fan
{"title":"Boosting Reactive Oxygen Species Generation via Contact-Electro-Catalysis with FeIII-Initiated Self-cycled Fenton System","authors":"Weixin Li, Jialuo Tu, Jikai Sun, Yuanbao Zhang, Jiale Fang, Mingda Wang, Xiangyu Liu, Prof. Zhong-Qun Tian, Prof. Feng Ru Fan","doi":"10.1002/anie.202413246","DOIUrl":null,"url":null,"abstract":"<p>Contact Electro-Catalysis (CEC) using commercial dielectric materials in contact-separation cycles with water can trigger interfacial electron transfer and induce the generation of reactive oxygen species (ROS). However, the inherent hydrophobicity of commercial dielectric materials limits the effective reaction sites, and the generated ROS inevitably undergo self-combination to form hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>). In typical CEC systems, H<sub>2</sub>O<sub>2</sub> does not further decompose into ROS, leading to suboptimal reaction rates. Addressing the generation and activation of H<sub>2</sub>O<sub>2</sub> is therefore crucial for advancing CEC. Here, we synthesized a catalyst by loading the dielectric material polytetrafluoroethylene (PTFE) onto ZSM-5 (PTFE/ZSM-5, PZ for short), achieving uniform dispersion of the catalyst in water for the first time. The introduction of an Fe<sup>III</sup>-initiated self-cycling Fenton system (SF-CEC), with the synergistic effects of O<sub>2</sub> activation and Fe<sup>III</sup>-activated H<sub>2</sub>O<sub>2</sub>, further enhanced ROS generation. In the Fe<sup>III</sup>-initiated SF-CEC system, the synergistic effects of ROS and protonated azo dyes enabled nearly 99 % degradation of azo dyes within 10 minutes, a sixfold improvement compared to the CEC system. This represents the fastest degradation rate of methyl orange dye induced by ultrasound to date. Without extra oxidants, this system enabled stable dissolution of precious metals in weakly acidic solutions at room temperature, achieving 80 % gold dissolution within 2 hours, 2.5 times faster than similar CEC systems. This study also corrects the unfavorable perception of CEC applications under acidic conditions, providing new insights for the fields of dye degradation and precious metal recovery.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"64 1","pages":""},"PeriodicalIF":16.9000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anie.202413246","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Contact Electro-Catalysis (CEC) using commercial dielectric materials in contact-separation cycles with water can trigger interfacial electron transfer and induce the generation of reactive oxygen species (ROS). However, the inherent hydrophobicity of commercial dielectric materials limits the effective reaction sites, and the generated ROS inevitably undergo self-combination to form hydrogen peroxide (H2O2). In typical CEC systems, H2O2 does not further decompose into ROS, leading to suboptimal reaction rates. Addressing the generation and activation of H2O2 is therefore crucial for advancing CEC. Here, we synthesized a catalyst by loading the dielectric material polytetrafluoroethylene (PTFE) onto ZSM-5 (PTFE/ZSM-5, PZ for short), achieving uniform dispersion of the catalyst in water for the first time. The introduction of an FeIII-initiated self-cycling Fenton system (SF-CEC), with the synergistic effects of O2 activation and FeIII-activated H2O2, further enhanced ROS generation. In the FeIII-initiated SF-CEC system, the synergistic effects of ROS and protonated azo dyes enabled nearly 99 % degradation of azo dyes within 10 minutes, a sixfold improvement compared to the CEC system. This represents the fastest degradation rate of methyl orange dye induced by ultrasound to date. Without extra oxidants, this system enabled stable dissolution of precious metals in weakly acidic solutions at room temperature, achieving 80 % gold dissolution within 2 hours, 2.5 times faster than similar CEC systems. This study also corrects the unfavorable perception of CEC applications under acidic conditions, providing new insights for the fields of dye degradation and precious metal recovery.
期刊介绍:
Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.