Boosting Reactive Oxygen Species Generation via Contact-Electro-Catalysis with FeIII-Initiated Self-cycled Fenton System

IF 16.9 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Weixin Li, Jialuo Tu, Jikai Sun, Yuanbao Zhang, Jiale Fang, Mingda Wang, Xiangyu Liu, Prof. Zhong-Qun Tian, Prof. Feng Ru Fan
{"title":"Boosting Reactive Oxygen Species Generation via Contact-Electro-Catalysis with FeIII-Initiated Self-cycled Fenton System","authors":"Weixin Li,&nbsp;Jialuo Tu,&nbsp;Jikai Sun,&nbsp;Yuanbao Zhang,&nbsp;Jiale Fang,&nbsp;Mingda Wang,&nbsp;Xiangyu Liu,&nbsp;Prof. Zhong-Qun Tian,&nbsp;Prof. Feng Ru Fan","doi":"10.1002/anie.202413246","DOIUrl":null,"url":null,"abstract":"<p>Contact Electro-Catalysis (CEC) using commercial dielectric materials in contact-separation cycles with water can trigger interfacial electron transfer and induce the generation of reactive oxygen species (ROS). However, the inherent hydrophobicity of commercial dielectric materials limits the effective reaction sites, and the generated ROS inevitably undergo self-combination to form hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>). In typical CEC systems, H<sub>2</sub>O<sub>2</sub> does not further decompose into ROS, leading to suboptimal reaction rates. Addressing the generation and activation of H<sub>2</sub>O<sub>2</sub> is therefore crucial for advancing CEC. Here, we synthesized a catalyst by loading the dielectric material polytetrafluoroethylene (PTFE) onto ZSM-5 (PTFE/ZSM-5, PZ for short), achieving uniform dispersion of the catalyst in water for the first time. The introduction of an Fe<sup>III</sup>-initiated self-cycling Fenton system (SF-CEC), with the synergistic effects of O<sub>2</sub> activation and Fe<sup>III</sup>-activated H<sub>2</sub>O<sub>2</sub>, further enhanced ROS generation. In the Fe<sup>III</sup>-initiated SF-CEC system, the synergistic effects of ROS and protonated azo dyes enabled nearly 99 % degradation of azo dyes within 10 minutes, a sixfold improvement compared to the CEC system. This represents the fastest degradation rate of methyl orange dye induced by ultrasound to date. Without extra oxidants, this system enabled stable dissolution of precious metals in weakly acidic solutions at room temperature, achieving 80 % gold dissolution within 2 hours, 2.5 times faster than similar CEC systems. This study also corrects the unfavorable perception of CEC applications under acidic conditions, providing new insights for the fields of dye degradation and precious metal recovery.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"64 1","pages":""},"PeriodicalIF":16.9000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anie.202413246","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Contact Electro-Catalysis (CEC) using commercial dielectric materials in contact-separation cycles with water can trigger interfacial electron transfer and induce the generation of reactive oxygen species (ROS). However, the inherent hydrophobicity of commercial dielectric materials limits the effective reaction sites, and the generated ROS inevitably undergo self-combination to form hydrogen peroxide (H2O2). In typical CEC systems, H2O2 does not further decompose into ROS, leading to suboptimal reaction rates. Addressing the generation and activation of H2O2 is therefore crucial for advancing CEC. Here, we synthesized a catalyst by loading the dielectric material polytetrafluoroethylene (PTFE) onto ZSM-5 (PTFE/ZSM-5, PZ for short), achieving uniform dispersion of the catalyst in water for the first time. The introduction of an FeIII-initiated self-cycling Fenton system (SF-CEC), with the synergistic effects of O2 activation and FeIII-activated H2O2, further enhanced ROS generation. In the FeIII-initiated SF-CEC system, the synergistic effects of ROS and protonated azo dyes enabled nearly 99 % degradation of azo dyes within 10 minutes, a sixfold improvement compared to the CEC system. This represents the fastest degradation rate of methyl orange dye induced by ultrasound to date. Without extra oxidants, this system enabled stable dissolution of precious metals in weakly acidic solutions at room temperature, achieving 80 % gold dissolution within 2 hours, 2.5 times faster than similar CEC systems. This study also corrects the unfavorable perception of CEC applications under acidic conditions, providing new insights for the fields of dye degradation and precious metal recovery.

Abstract Image

利用铁Ⅲ引发的自循环芬顿系统通过接触电催化促进活性氧生成
在与水的接触分离循环中,使用商用电介质材料的接触电催化(CEC)会引发界面电子转移,产生活性氧(ROS)。然而,这些材料的疏水性限制了反应位点,生成的 ROS 往往结合成过氧化氢 (H2O2),而过氧化氢不会进一步分解,导致速率不理想。解决 H2O2 的生成和活化问题对于推进 CEC 至关重要。在此,我们将聚四氟乙烯(PTFE)负载到 ZSM-5 (PZ) 上,合成了一种催化剂,并在水中实现了均匀分散。引入 FeIII 引发的自循环芬顿系统(SF-CEC),协同激活 O2 和 FeIII 激活的 H2O2,增强了 ROS 的生成。该系统能在 10 分钟内降解近 99% 的偶氮染料,比传统的 CEC 提高了六倍。这是迄今为止超声诱导降解甲基橙染料速度最快的方法。在不使用额外氧化剂的情况下,它还实现了贵金属在室温弱酸性溶液中的稳定溶解,2 小时内黄金溶解度达到 80%,比同类系统快 5 倍。这项研究纠正了人们对酸性条件下 CEC 的认识,为染料降解和贵金属回收提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信