{"title":"Spatial sampling bias influences our understanding of early hominin evolution in eastern Africa","authors":"W. Andrew Barr, Bernard Wood","doi":"10.1038/s41559-024-02522-5","DOIUrl":null,"url":null,"abstract":"The eastern branch of the Eastern African Rift System (EARS) is the source of a large proportion of the early hominin fossil record, but it covers a tiny fraction (ca. 1%) of the continent. Here we investigate how this mismatch between where fossils are preserved and where hominins probably lived may influence our ability to understand early hominin evolution, using extant mammals as analogues. We show that the eastern branch of the EARS is not an environmentally representative sample of the full species range for nearly all extant rift-dwelling mammals. Likewise, when we investigate published morphometric datasets for extant cercopithecine primates, evidence from the eastern branch alone fails to capture major portions of continental-scale cercopithecine cranial morphospace. We suggest that extant rift-dwelling species should be used as analogues to place confidence intervals on hominin habitat reconstructions. Furthermore, given the north–south orientation of the eastern branch of the EARS, morphoclines that are not aligned along this major north–south axis are likely to be poorly sampled by sites in the eastern branch. There is a pressing need for research on the geography of early hominin morphoclines to estimate how morphologically representative the hominin fossil sample from the eastern branch may be. The Eastern African Rift System (EARS) is a key location for the hominin fossil record, but the fact that it samples a narrow section of the continent has long been known. The authors tackle this known (but largely unaddressed) bias by sampling the distribution and morphospace of extant mammals in the rift, showing that the eastern branch of the EARS fails to capture the full range of diversity and morphology. This approach could be helpful to place confidence intervals on extinct habitat reconstructions, controlling for spatial bias.","PeriodicalId":18835,"journal":{"name":"Nature ecology & evolution","volume":"8 11","pages":"2113-2120"},"PeriodicalIF":13.9000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature ecology & evolution","FirstCategoryId":"99","ListUrlMain":"https://www.nature.com/articles/s41559-024-02522-5","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The eastern branch of the Eastern African Rift System (EARS) is the source of a large proportion of the early hominin fossil record, but it covers a tiny fraction (ca. 1%) of the continent. Here we investigate how this mismatch between where fossils are preserved and where hominins probably lived may influence our ability to understand early hominin evolution, using extant mammals as analogues. We show that the eastern branch of the EARS is not an environmentally representative sample of the full species range for nearly all extant rift-dwelling mammals. Likewise, when we investigate published morphometric datasets for extant cercopithecine primates, evidence from the eastern branch alone fails to capture major portions of continental-scale cercopithecine cranial morphospace. We suggest that extant rift-dwelling species should be used as analogues to place confidence intervals on hominin habitat reconstructions. Furthermore, given the north–south orientation of the eastern branch of the EARS, morphoclines that are not aligned along this major north–south axis are likely to be poorly sampled by sites in the eastern branch. There is a pressing need for research on the geography of early hominin morphoclines to estimate how morphologically representative the hominin fossil sample from the eastern branch may be. The Eastern African Rift System (EARS) is a key location for the hominin fossil record, but the fact that it samples a narrow section of the continent has long been known. The authors tackle this known (but largely unaddressed) bias by sampling the distribution and morphospace of extant mammals in the rift, showing that the eastern branch of the EARS fails to capture the full range of diversity and morphology. This approach could be helpful to place confidence intervals on extinct habitat reconstructions, controlling for spatial bias.
Nature ecology & evolutionAgricultural and Biological Sciences-Ecology, Evolution, Behavior and Systematics
CiteScore
22.20
自引率
2.40%
发文量
282
期刊介绍:
Nature Ecology & Evolution is interested in the full spectrum of ecological and evolutionary biology, encompassing approaches at the molecular, organismal, population, community and ecosystem levels, as well as relevant parts of the social sciences. Nature Ecology & Evolution provides a place where all researchers and policymakers interested in all aspects of life's diversity can come together to learn about the most accomplished and significant advances in the field and to discuss topical issues. An online-only monthly journal, our broad scope ensures that the research published reaches the widest possible audience of scientists.