Isolated attosecond pulse generation in a semi-infinite gas cell driven by time-gated phase matching

IF 20.6 Q1 OPTICS
Federico Vismarra, Marina Fernández-Galán, Daniele Mocci, Lorenzo Colaizzi, Víctor Wilfried Segundo, Roberto Boyero-García, Javier Serrano, Enrique Conejero-Jarque, Marta Pini, Lorenzo Mai, Yingxuan Wu, Hans Jakob Wörner, Elisa Appi, Cord L. Arnold, Maurizio Reduzzi, Matteo Lucchini, Julio San Román, Mauro Nisoli, Carlos Hernández-García, Rocío Borrego-Varillas
{"title":"Isolated attosecond pulse generation in a semi-infinite gas cell driven by time-gated phase matching","authors":"Federico Vismarra, Marina Fernández-Galán, Daniele Mocci, Lorenzo Colaizzi, Víctor Wilfried Segundo, Roberto Boyero-García, Javier Serrano, Enrique Conejero-Jarque, Marta Pini, Lorenzo Mai, Yingxuan Wu, Hans Jakob Wörner, Elisa Appi, Cord L. Arnold, Maurizio Reduzzi, Matteo Lucchini, Julio San Román, Mauro Nisoli, Carlos Hernández-García, Rocío Borrego-Varillas","doi":"10.1038/s41377-024-01564-5","DOIUrl":null,"url":null,"abstract":"<p>Isolated attosecond pulse (IAP) generation usually involves the use of short-medium gas cells operated at high pressures. In contrast, long-medium schemes at low pressures are commonly perceived as inherently unsuitable for IAP generation due to the nonlinear phenomena that challenge favourable phase-matching conditions. Here we provide clear experimental evidence on the generation of isolated extreme-ultraviolet attosecond pulses in a semi-infinite gas cell, demonstrating the use of extended-medium geometries for effective production of IAPs. To gain a deeper understanding we develop a simulation method for high-order harmonic generation (HHG), which combines nonlinear propagation with macroscopic HHG solving the 3D time-dependent Schrödinger equation at the single-atom level. Our simulations reveal that the nonlinear spatio-temporal reshaping of the driving field, observed in the experiment as a bright plasma channel, acts as a self-regulating mechanism boosting the phase-matching conditions for the generation of IAPs.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":null,"pages":null},"PeriodicalIF":20.6000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Light-Science & Applications","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.1038/s41377-024-01564-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Isolated attosecond pulse (IAP) generation usually involves the use of short-medium gas cells operated at high pressures. In contrast, long-medium schemes at low pressures are commonly perceived as inherently unsuitable for IAP generation due to the nonlinear phenomena that challenge favourable phase-matching conditions. Here we provide clear experimental evidence on the generation of isolated extreme-ultraviolet attosecond pulses in a semi-infinite gas cell, demonstrating the use of extended-medium geometries for effective production of IAPs. To gain a deeper understanding we develop a simulation method for high-order harmonic generation (HHG), which combines nonlinear propagation with macroscopic HHG solving the 3D time-dependent Schrödinger equation at the single-atom level. Our simulations reveal that the nonlinear spatio-temporal reshaping of the driving field, observed in the experiment as a bright plasma channel, acts as a self-regulating mechanism boosting the phase-matching conditions for the generation of IAPs.

Abstract Image

由时间门控相位匹配驱动的半无限气体池中的隔离阿秒脉冲生成
隔离阿秒脉冲(IAP)的产生通常需要使用在高压下运行的短介质气室。相比之下,由于非线性现象对有利的相位匹配条件提出了挑战,低压下的长介质方案通常被认为在本质上不适合产生 IAP。在这里,我们提供了在半无限气体池中产生孤立极紫外阿秒脉冲的明确实验证据,证明了使用长介质几何结构可以有效产生 IAP。为了获得更深入的理解,我们开发了一种高阶谐波发生(HHG)模拟方法,它将非线性传播与宏观 HHG 结合起来,在单原子水平上求解三维时变薛定谔方程。我们的模拟揭示了驱动场的非线性时空重塑(在实验中观察到的明亮等离子体通道)作为一种自我调节机制,促进了产生 IAP 的相位匹配条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Light-Science & Applications
Light-Science & Applications 数理科学, 物理学I, 光学, 凝聚态物性 II :电子结构、电学、磁学和光学性质, 无机非金属材料, 无机非金属类光电信息与功能材料, 工程与材料, 信息科学, 光学和光电子学, 光学和光电子材料, 非线性光学与量子光学
自引率
0.00%
发文量
803
审稿时长
2.1 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信