Two point boundary value problems for ordinary differential systems with generalized variable exponents operators

IF 1.8 3区 数学 Q1 MATHEMATICS, APPLIED
Marta García-Huidobro , Raúl Manásevich , Jean Mawhin , Satoshi Tanaka
{"title":"Two point boundary value problems for ordinary differential systems with generalized variable exponents operators","authors":"Marta García-Huidobro ,&nbsp;Raúl Manásevich ,&nbsp;Jean Mawhin ,&nbsp;Satoshi Tanaka","doi":"10.1016/j.nonrwa.2024.104196","DOIUrl":null,"url":null,"abstract":"<div><p>In recent years an increasing interest in more general operators generated by Musielak–Orlicz functions is under development since they provided, in principle, a unified treatment to deal with ordinary and partial differential equations with operators containing the <span><math><mi>p</mi></math></span>-Laplace operator, the <span><math><mi>ϕ</mi></math></span>-Laplace operator, operators with variable exponents and the double phase operators. These kind of consideration lead us in García-Huidobro et al. (2024), to consider problems containing the operator <span><math><msup><mrow><mrow><mo>(</mo><mi>S</mi><mrow><mo>(</mo><mi>t</mi><mo>,</mo><msup><mrow><mi>u</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>)</mo></mrow><mo>)</mo></mrow></mrow><mrow><mo>′</mo></mrow></msup></math></span>, where <span><math><mrow><msup><mrow></mrow><mrow><mo>′</mo></mrow></msup><mo>=</mo><mfrac><mrow><mi>d</mi></mrow><mrow><mi>d</mi><mi>t</mi></mrow></mfrac></mrow></math></span> and look for period solutions of systems of nonlinear systems of differential equations. In this paper we extend our approach to deal with systems of differential equations containing the operator <span><math><msup><mrow><mrow><mo>(</mo><mi>S</mi><mrow><mo>(</mo><mi>t</mi><mo>,</mo><msup><mrow><mi>u</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>)</mo></mrow><mo>)</mo></mrow></mrow><mrow><mo>′</mo></mrow></msup></math></span> this time under Dirichlet, mixed and Neumann boundary conditions. As in García-Huidobro et al. (2024) our approach is to work in <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span> spaces to obtain suitable abstract fixed points theorems from which several applications are obtained, including problems of Liénard and Hartman type.</p></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"81 ","pages":"Article 104196"},"PeriodicalIF":1.8000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1468121824001354/pdfft?md5=ac628e3767222624855b536f51042fcb&pid=1-s2.0-S1468121824001354-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Real World Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1468121824001354","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In recent years an increasing interest in more general operators generated by Musielak–Orlicz functions is under development since they provided, in principle, a unified treatment to deal with ordinary and partial differential equations with operators containing the p-Laplace operator, the ϕ-Laplace operator, operators with variable exponents and the double phase operators. These kind of consideration lead us in García-Huidobro et al. (2024), to consider problems containing the operator (S(t,u)), where =ddt and look for period solutions of systems of nonlinear systems of differential equations. In this paper we extend our approach to deal with systems of differential equations containing the operator (S(t,u)) this time under Dirichlet, mixed and Neumann boundary conditions. As in García-Huidobro et al. (2024) our approach is to work in C1 spaces to obtain suitable abstract fixed points theorems from which several applications are obtained, including problems of Liénard and Hartman type.

具有广义可变指数算子的常微分系统的两点边界值问题
近年来,人们对穆西拉克-奥立兹函数产生的更一般的算子越来越感兴趣,因为这些算子原则上提供了统一的处理方法,可以处理包含 p-拉普拉斯算子、j-拉普拉斯算子、可变指数算子和双相算子的常微分方程和偏微分方程。这些考虑导致我们在 García-Huidobro 等人(2024 年)中考虑了包含算子 (S(t,u′))′(其中 ′=ddt )的问题,并寻找非线性微分方程系统的周期解。在本文中,我们将我们的方法扩展到处理包含算子 (S(t,u′))′ 的微分方程系统,这次是在迪里夏特、混合和诺伊曼边界条件下。与加西亚-惠多布罗等人(2024 年)的研究一样,我们的方法是在 C1 空间中工作,以获得合适的抽象定点定理,并从中获得若干应用,包括李纳和哈特曼类型的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.80
自引率
5.00%
发文量
176
审稿时长
59 days
期刊介绍: Nonlinear Analysis: Real World Applications welcomes all research articles of the highest quality with special emphasis on applying techniques of nonlinear analysis to model and to treat nonlinear phenomena with which nature confronts us. Coverage of applications includes any branch of science and technology such as solid and fluid mechanics, material science, mathematical biology and chemistry, control theory, and inverse problems. The aim of Nonlinear Analysis: Real World Applications is to publish articles which are predominantly devoted to employing methods and techniques from analysis, including partial differential equations, functional analysis, dynamical systems and evolution equations, calculus of variations, and bifurcations theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信