A multilevel Monte Carlo algorithm for stochastic differential equations driven by countably dimensional Wiener process and Poisson random measure

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Michał Sobieraj
{"title":"A multilevel Monte Carlo algorithm for stochastic differential equations driven by countably dimensional Wiener process and Poisson random measure","authors":"Michał Sobieraj","doi":"10.1016/j.apnum.2024.08.007","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we investigate properties of standard and multilevel Monte Carlo methods for weak approximation of solutions of stochastic differential equations (SDEs) driven by infinite-dimensional Wiener process and Poisson random measure with Lipschitz payoff function. The error of the truncated dimension randomized numerical scheme, which depends on two parameters i.e., grid density <span><math><mi>n</mi><mo>∈</mo><mi>N</mi></math></span> and truncation dimension parameter <span><math><mi>M</mi><mo>∈</mo><mi>N</mi></math></span>, is of the order <span><math><msup><mrow><mi>n</mi></mrow><mrow><mo>−</mo><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msup><mo>+</mo><mi>δ</mi><mo>(</mo><mi>M</mi><mo>)</mo></math></span> such that <span><math><mi>δ</mi><mo>(</mo><mo>⋅</mo><mo>)</mo></math></span> is positive and decreasing to 0. We derive a complexity model and provide proof for the complexity upper bound of the multilevel Monte Carlo method which depends on two increasing sequences of parameters for both <em>n</em> and <em>M</em>. The complexity is measured in terms of upper bound for mean-squared error and is compared with the complexity of the standard Monte Carlo algorithm. The results from numerical experiments as well as Python and CUDA C implementation details are also reported.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168927424002034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we investigate properties of standard and multilevel Monte Carlo methods for weak approximation of solutions of stochastic differential equations (SDEs) driven by infinite-dimensional Wiener process and Poisson random measure with Lipschitz payoff function. The error of the truncated dimension randomized numerical scheme, which depends on two parameters i.e., grid density nN and truncation dimension parameter MN, is of the order n1/2+δ(M) such that δ() is positive and decreasing to 0. We derive a complexity model and provide proof for the complexity upper bound of the multilevel Monte Carlo method which depends on two increasing sequences of parameters for both n and M. The complexity is measured in terms of upper bound for mean-squared error and is compared with the complexity of the standard Monte Carlo algorithm. The results from numerical experiments as well as Python and CUDA C implementation details are also reported.

由可数维维纳过程和泊松随机测量驱动的随机微分方程的多级蒙特卡洛算法
本文研究了标准蒙特卡罗方法和多级蒙特卡罗方法的特性,这些方法用于弱逼近由无限维维纳过程和具有 Lipschitz 付酬函数的泊松随机度量驱动的随机微分方程(SDE)的解。截断维随机数值方案的误差取决于两个参数,即我们推导了一个复杂度模型,并证明了多级蒙特卡罗方法的复杂度上限,该方法取决于 n 和 M 的两个递增参数序列。此外,还报告了数值实验结果以及 Python 和 CUDA C 语言的实现细节。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信