{"title":"Evaluation of physicochemical properties of zinc oxide and indium-tin oxide nanoparticles for photocatalysis and biomedical activities","authors":"Habtamu Fekadu Etefa , Dugasa Jabesa Nemera , Kebena Tekle Etefa , E. Ranjith Kumar","doi":"10.1016/j.cap.2024.08.001","DOIUrl":null,"url":null,"abstract":"<div><p>Metal oxide nanoparticles, such as ZnO nanoparticles (NPs) and ITO NPs (indium tin oxide nanoparticles), were generated using the sol-gel and co-precipitation process to demonstrate photocatalytic degradation and antioxidant activities. The produced nanoparticles were examined for structural, morphological, and optical characteristics. ZnO and ITO NPs confirm their nanoscale properties by being smaller in size, ranging from 13 nm to 17 nm on average. The spherical nanoparticles were imaged using TEM, and the particle distribution was determined using a histogram plot. The optical property is a key criterion in determining nanomaterials' photocatalytic activity. UV–vis spectra confirm that the produced nanoparticles are a good candidate for photocatalytic activity. The study reports significant discoveries about the photocatalytic degradation and antioxidant properties of ZnO NPs and their composite with ITO NPs. Under light irradiation, ZnO-ITO NPs exhibit exceptional photocatalytic activity and strong antioxidant properties, effectively scavenging reactive oxygen species (ROS) and lowering oxidative stress. According to the findings, ZnO NPs and ZnO NPs-ITO NPs have enormous potential for photocatalytic degradation and antioxidant activities. The effectiveness of photocatalytic degradation of ZnO NPs and ZnO NPs-ITO NPs increases with pH from 4 to 8, with the highest efficiency seen at pH 8. Furthermore, their antioxidant properties make them attractive candidates for use in biomedical and pharmaceutical applications to treat oxidative stress-related diseases. More research and refining of these nanoparticles' properties are needed to fully realize their potential in these sectors.</p></div>","PeriodicalId":11037,"journal":{"name":"Current Applied Physics","volume":"67 ","pages":"Pages 133-142"},"PeriodicalIF":2.4000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Applied Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1567173924001767","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Metal oxide nanoparticles, such as ZnO nanoparticles (NPs) and ITO NPs (indium tin oxide nanoparticles), were generated using the sol-gel and co-precipitation process to demonstrate photocatalytic degradation and antioxidant activities. The produced nanoparticles were examined for structural, morphological, and optical characteristics. ZnO and ITO NPs confirm their nanoscale properties by being smaller in size, ranging from 13 nm to 17 nm on average. The spherical nanoparticles were imaged using TEM, and the particle distribution was determined using a histogram plot. The optical property is a key criterion in determining nanomaterials' photocatalytic activity. UV–vis spectra confirm that the produced nanoparticles are a good candidate for photocatalytic activity. The study reports significant discoveries about the photocatalytic degradation and antioxidant properties of ZnO NPs and their composite with ITO NPs. Under light irradiation, ZnO-ITO NPs exhibit exceptional photocatalytic activity and strong antioxidant properties, effectively scavenging reactive oxygen species (ROS) and lowering oxidative stress. According to the findings, ZnO NPs and ZnO NPs-ITO NPs have enormous potential for photocatalytic degradation and antioxidant activities. The effectiveness of photocatalytic degradation of ZnO NPs and ZnO NPs-ITO NPs increases with pH from 4 to 8, with the highest efficiency seen at pH 8. Furthermore, their antioxidant properties make them attractive candidates for use in biomedical and pharmaceutical applications to treat oxidative stress-related diseases. More research and refining of these nanoparticles' properties are needed to fully realize their potential in these sectors.
期刊介绍:
Current Applied Physics (Curr. Appl. Phys.) is a monthly published international journal covering all the fields of applied science investigating the physics of the advanced materials for future applications.
Other areas covered: Experimental and theoretical aspects of advanced materials and devices dealing with synthesis or structural chemistry, physical and electronic properties, photonics, engineering applications, and uniquely pertinent measurement or analytical techniques.
Current Applied Physics, published since 2001, covers physics, chemistry and materials science, including bio-materials, with their engineering aspects. It is a truly interdisciplinary journal opening a forum for scientists of all related fields, a unique point of the journal discriminating it from other worldwide and/or Pacific Rim applied physics journals.
Regular research papers, letters and review articles with contents meeting the scope of the journal will be considered for publication after peer review.
The Journal is owned by the Korean Physical Society.