On a Schrödinger equation involving fractional (N/s1,q)-Laplacian with critical growth and Trudinger–Moser nonlinearity

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Huilin Lv, Shenzhou Zheng
{"title":"On a Schrödinger equation involving fractional (N/s1,q)-Laplacian with critical growth and Trudinger–Moser nonlinearity","authors":"Huilin Lv,&nbsp;Shenzhou Zheng","doi":"10.1016/j.cnsns.2024.108284","DOIUrl":null,"url":null,"abstract":"<div><p>A nonlinear Schrödinger equation of fractional <span><math><mrow><mo>(</mo><mi>N</mi><mo>/</mo><msub><mrow><mi>s</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mi>q</mi><mo>)</mo></mrow></math></span>-Laplacian is considered with the Rabinowitz potential, critical Sobolev growth and Trudinger–Moser nonlinearity in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></math></span> <span><span><span><math><mrow><msubsup><mrow><mfenced><mrow><mo>−</mo><mi>Δ</mi></mrow></mfenced></mrow><mrow><mi>N</mi><mo>/</mo><msub><mrow><mi>s</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow><mrow><msub><mrow><mi>s</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></msubsup><mi>u</mi><mo>+</mo><msubsup><mrow><mfenced><mrow><mo>−</mo><mi>Δ</mi></mrow></mfenced></mrow><mrow><mi>q</mi></mrow><mrow><msub><mrow><mi>s</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></msubsup><mi>u</mi><mo>+</mo><mi>V</mi><mrow><mo>(</mo><mi>ɛ</mi><mi>x</mi><mo>)</mo></mrow><mrow><mo>(</mo><mrow><msup><mrow><mfenced><mrow><mi>u</mi></mrow></mfenced></mrow><mrow><mfrac><mrow><mi>N</mi></mrow><mrow><msub><mrow><mi>s</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></mfrac><mo>−</mo><mn>2</mn></mrow></msup><mi>u</mi><mo>+</mo><msup><mrow><mfenced><mrow><mi>u</mi></mrow></mfenced></mrow><mrow><mi>q</mi><mo>−</mo><mn>2</mn></mrow></msup><mi>u</mi></mrow><mo>)</mo></mrow><mo>=</mo><mi>λ</mi><mi>f</mi><mfenced><mrow><mi>u</mi></mrow></mfenced><mo>+</mo><msup><mrow><mfenced><mrow><mi>u</mi></mrow></mfenced></mrow><mrow><msubsup><mrow><mi>q</mi></mrow><mrow><msub><mrow><mi>s</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow><mrow><mo>∗</mo></mrow></msubsup><mo>−</mo><mn>2</mn></mrow></msup><mi>u</mi><mo>.</mo></mrow></math></span></span></span>We establish the global existence of nonnegative ground-state solution for suitable parameter values primarily through variational analysis, fractional Trudinger–Moser inequality and mountain pass approach. It is a crucial ingredient to handle three aspects concerning the limiting setting <span><math><mrow><msub><mrow><mi>s</mi></mrow><mrow><mn>1</mn></mrow></msub><mi>p</mi><mo>=</mo><mi>N</mi></mrow></math></span>, the critical Sobolev growth and Trudinger–Moser nonlinearity.</p></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1007570424004696","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

A nonlinear Schrödinger equation of fractional (N/s1,q)-Laplacian is considered with the Rabinowitz potential, critical Sobolev growth and Trudinger–Moser nonlinearity in RN ΔN/s1s1u+Δqs2u+V(ɛx)(uNs12u+uq2u)=λfu+uqs22u.We establish the global existence of nonnegative ground-state solution for suitable parameter values primarily through variational analysis, fractional Trudinger–Moser inequality and mountain pass approach. It is a crucial ingredient to handle three aspects concerning the limiting setting s1p=N, the critical Sobolev growth and Trudinger–Moser nonlinearity.

关于涉及分数(N/s1,q)-拉普拉奇的具有临界增长和特鲁丁格-莫泽非线性的薛定谔方程
在 RN -ΔN/s1s1u+-Δqs2u+V(ɛx)(uNs1-2u+uq-2u)=λfu+uqs2∗-2u 中考虑了分数 (N/s1,q)-Laplacian 非线性薛定谔方程与拉比诺维茨势、临界索波列夫增长和特鲁丁格-莫泽非线性。我们主要通过变分分析、分数特鲁丁格-莫泽不等式和山口方法,建立了合适参数值下非负基态解的全局存在性。这是处理有关极限设置 s1p=N、临界索波列夫增长和特鲁丁格-莫泽非线性三个方面的关键要素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信