{"title":"On a Schrödinger equation involving fractional (N/s1,q)-Laplacian with critical growth and Trudinger–Moser nonlinearity","authors":"Huilin Lv, Shenzhou Zheng","doi":"10.1016/j.cnsns.2024.108284","DOIUrl":null,"url":null,"abstract":"<div><p>A nonlinear Schrödinger equation of fractional <span><math><mrow><mo>(</mo><mi>N</mi><mo>/</mo><msub><mrow><mi>s</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mi>q</mi><mo>)</mo></mrow></math></span>-Laplacian is considered with the Rabinowitz potential, critical Sobolev growth and Trudinger–Moser nonlinearity in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></math></span> <span><span><span><math><mrow><msubsup><mrow><mfenced><mrow><mo>−</mo><mi>Δ</mi></mrow></mfenced></mrow><mrow><mi>N</mi><mo>/</mo><msub><mrow><mi>s</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow><mrow><msub><mrow><mi>s</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></msubsup><mi>u</mi><mo>+</mo><msubsup><mrow><mfenced><mrow><mo>−</mo><mi>Δ</mi></mrow></mfenced></mrow><mrow><mi>q</mi></mrow><mrow><msub><mrow><mi>s</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></msubsup><mi>u</mi><mo>+</mo><mi>V</mi><mrow><mo>(</mo><mi>ɛ</mi><mi>x</mi><mo>)</mo></mrow><mrow><mo>(</mo><mrow><msup><mrow><mfenced><mrow><mi>u</mi></mrow></mfenced></mrow><mrow><mfrac><mrow><mi>N</mi></mrow><mrow><msub><mrow><mi>s</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></mfrac><mo>−</mo><mn>2</mn></mrow></msup><mi>u</mi><mo>+</mo><msup><mrow><mfenced><mrow><mi>u</mi></mrow></mfenced></mrow><mrow><mi>q</mi><mo>−</mo><mn>2</mn></mrow></msup><mi>u</mi></mrow><mo>)</mo></mrow><mo>=</mo><mi>λ</mi><mi>f</mi><mfenced><mrow><mi>u</mi></mrow></mfenced><mo>+</mo><msup><mrow><mfenced><mrow><mi>u</mi></mrow></mfenced></mrow><mrow><msubsup><mrow><mi>q</mi></mrow><mrow><msub><mrow><mi>s</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow><mrow><mo>∗</mo></mrow></msubsup><mo>−</mo><mn>2</mn></mrow></msup><mi>u</mi><mo>.</mo></mrow></math></span></span></span>We establish the global existence of nonnegative ground-state solution for suitable parameter values primarily through variational analysis, fractional Trudinger–Moser inequality and mountain pass approach. It is a crucial ingredient to handle three aspects concerning the limiting setting <span><math><mrow><msub><mrow><mi>s</mi></mrow><mrow><mn>1</mn></mrow></msub><mi>p</mi><mo>=</mo><mi>N</mi></mrow></math></span>, the critical Sobolev growth and Trudinger–Moser nonlinearity.</p></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1007570424004696","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
A nonlinear Schrödinger equation of fractional -Laplacian is considered with the Rabinowitz potential, critical Sobolev growth and Trudinger–Moser nonlinearity in We establish the global existence of nonnegative ground-state solution for suitable parameter values primarily through variational analysis, fractional Trudinger–Moser inequality and mountain pass approach. It is a crucial ingredient to handle three aspects concerning the limiting setting , the critical Sobolev growth and Trudinger–Moser nonlinearity.