Results of existence and uniqueness for the Cauchy problem of semilinear heat equations on stratified Lie groups

IF 2.4 2区 数学 Q1 MATHEMATICS
Hiroyuki Hirayama , Yasuyuki Oka
{"title":"Results of existence and uniqueness for the Cauchy problem of semilinear heat equations on stratified Lie groups","authors":"Hiroyuki Hirayama ,&nbsp;Yasuyuki Oka","doi":"10.1016/j.jde.2024.08.027","DOIUrl":null,"url":null,"abstract":"<div><p>The aim of this paper is to give existence and uniqueness results for solutions of the Cauchy problem for semilinear heat equations on stratified Lie groups <span><math><mi>G</mi></math></span> with the homogeneous dimension <em>N</em>. We consider the nonlinear function behaves like <span><math><mo>|</mo><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>α</mi></mrow></msup></math></span> or <span><math><mo>|</mo><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>α</mi><mo>−</mo><mn>1</mn></mrow></msup><mi>u</mi></math></span> <span><math><mo>(</mo><mi>α</mi><mo>&gt;</mo><mn>1</mn><mo>)</mo></math></span> and the initial data <span><math><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> belongs to the Sobolev spaces <span><math><msubsup><mrow><mi>L</mi></mrow><mrow><mi>s</mi></mrow><mrow><mi>p</mi></mrow></msubsup><mo>(</mo><mi>G</mi><mo>)</mo></math></span> for <span><math><mn>1</mn><mo>&lt;</mo><mi>p</mi><mo>&lt;</mo><mo>∞</mo></math></span> and <span><math><mn>0</mn><mo>&lt;</mo><mi>s</mi><mo>&lt;</mo><mi>N</mi><mo>/</mo><mi>p</mi></math></span>. Since stratified Lie groups <span><math><mi>G</mi></math></span> include the Euclidean space <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> as an example, our results are an extension of the existence and uniqueness results obtained by F. Ribaud on <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> to <span><math><mi>G</mi></math></span>. It should be noted that our proof is very different from it given by Ribaud on <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>. We adopt the generalized fractional chain rule on <span><math><mi>G</mi></math></span> to obtain the estimate for the nonlinear term, which is very different from the paracomposition technique adopted by Ribaud on <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>. By using the generalized fractional chain rule on <span><math><mi>G</mi></math></span>, we can avoid the discussion of Fourier analysis on <span><math><mi>G</mi></math></span> and make the proof more simple.</p></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039624005096","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The aim of this paper is to give existence and uniqueness results for solutions of the Cauchy problem for semilinear heat equations on stratified Lie groups G with the homogeneous dimension N. We consider the nonlinear function behaves like |u|α or |u|α1u (α>1) and the initial data u0 belongs to the Sobolev spaces Lsp(G) for 1<p< and 0<s<N/p. Since stratified Lie groups G include the Euclidean space Rn as an example, our results are an extension of the existence and uniqueness results obtained by F. Ribaud on Rn to G. It should be noted that our proof is very different from it given by Ribaud on Rn. We adopt the generalized fractional chain rule on G to obtain the estimate for the nonlinear term, which is very different from the paracomposition technique adopted by Ribaud on Rn. By using the generalized fractional chain rule on G, we can avoid the discussion of Fourier analysis on G and make the proof more simple.

分层李群上半线性热方程的考奇问题的存在性和唯一性结果
我们认为非线性函数的行为类似于 |u|α 或 |u|α-1u (α>1),初始数据 u0 属于 1<p<∞ 和 0<s<N/p 的索波列夫空间 Lsp(G)。由于分层李群 G 包括欧几里得空间 Rn,我们的结果是 F. Ribaud 在 Rn 上得到的存在性和唯一性结果在 G 上的扩展。我们在 G 上采用广义分数链法则来获得非线性项的估计值,这与 Ribaud 在 Rn 上采用的准分解技术截然不同。通过使用 G 上的广义分数链规则,我们可以避免讨论 G 上的傅里叶分析,并使证明更加简单。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信