Comparison of clinical selection-based genetic testing with phenotype-agnostic extensive germline sequencing to diagnose genetic predisposition in children with cancer: a prospective diagnostic study
Jette J Bakhuizen MD , Freerk van Dijk MSc , Marco J Koudijs PhD , Reno S Bladergroen BSc , Sebastian B B Bon MD , Saskia M J Hopman PhD , Lennart A Kester PhD , Mariëtte E G Kranendonk PhD , Jan L C Loeffen PhD , Stephanie E Smetsers PhD , Edwin Sonneveld PhD , Melissa Tachdjian BA , Evelien de Vos-Kerkhof PhD , Catherine Goudie MD , Prof Johannes H M Merks PhD , Prof Roland P Kuiper PhD , Marjolijn C J Jongmans PhD
{"title":"Comparison of clinical selection-based genetic testing with phenotype-agnostic extensive germline sequencing to diagnose genetic predisposition in children with cancer: a prospective diagnostic study","authors":"Jette J Bakhuizen MD , Freerk van Dijk MSc , Marco J Koudijs PhD , Reno S Bladergroen BSc , Sebastian B B Bon MD , Saskia M J Hopman PhD , Lennart A Kester PhD , Mariëtte E G Kranendonk PhD , Jan L C Loeffen PhD , Stephanie E Smetsers PhD , Edwin Sonneveld PhD , Melissa Tachdjian BA , Evelien de Vos-Kerkhof PhD , Catherine Goudie MD , Prof Johannes H M Merks PhD , Prof Roland P Kuiper PhD , Marjolijn C J Jongmans PhD","doi":"10.1016/S2352-4642(24)00144-5","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Germline data have become widely available in paediatric oncology since the introduction of paired tumour-germline sequencing. To guide best practice in cancer predisposition syndrome (CPS) diagnostics, we aimed to assess the diagnostic yield of extensive germline analysis compared with clinical selection-based genetic testing among all children with cancer.</p></div><div><h3>Methods</h3><p>In this prospective diagnostic study, all children (aged 0–19 years) with newly diagnosed neoplasms treated in the Netherlands national centre, the Princess Máxima Center for Pediatric Oncology (Utrecht, Netherlands), between June 1, 2020, and July 31, 2022, were offered two approaches to identify CPSs. In a phenotype-driven approach, paediatric oncologists used the McGill Interactive Pediatric OncoGenetic Guidelines tool to select children for referral to a clinical geneticist, and for genetic testing. In a phenotype-agnostic approach, CPS gene panel sequencing (143 genes) was offered to all children. In children declining the research CPS gene panel, 49 CPS genes were still analysed as part of routine diagnostics by the pathologist. Children with a causative CPS identified before neoplasm diagnosis were excluded. The primary objective was to compare the number and type of patients diagnosed with a CPS between the two approaches.</p></div><div><h3>Findings</h3><p>1052 children were eligible for this study, of whom 733 (70%) completed both the phenotype-driven approach and received phenotype-agnostic CPS gene panel sequencing (143 genes n=600; 49 genes n=133). In 53 children, a CPS was identified: 14 (26%) were diagnosed by the phenotype-driven approach only, 22 (42%) by CPS gene sequencing only, and 17 (32%) by both approaches. In 27 (51%) of the 53 children, the identified CPS was considered causative for the child's neoplasm. Only one (4%) of the 27 causative CPSs was missed by the phenotype-driven approach and was identified solely by phenotype-agnostic CPS gene sequencing. In 26 (49%) children, a CPS with uncertain causality was identified, including 14 adult-onset CPSs. The CPSs with uncertain causality were mainly detected by the phenotype-agnostic approach (21 [81%] of 26).</p></div><div><h3>Interpretation</h3><p>Phenotype-driven genetic testing and phenotype-agnostic CPS gene panel sequencing were complementary. The phenotype-driven approach identified the most causative CPSs. CPS gene panel sequencing identified additional CPSs, many of those with uncertain causality, but some with clinical utility. We advise clinical evaluation for CPSs in all children with neoplasms. Phenotype-agnostic testing of all CPS genes is preferably conducted only in research settings and should be paired with counseling.</p></div><div><h3>Funding</h3><p>Stichting Kinderen Kankervrij.</p></div>","PeriodicalId":54238,"journal":{"name":"Lancet Child & Adolescent Health","volume":"8 10","pages":"Pages 751-761"},"PeriodicalIF":19.9000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lancet Child & Adolescent Health","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352464224001445","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PEDIATRICS","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Germline data have become widely available in paediatric oncology since the introduction of paired tumour-germline sequencing. To guide best practice in cancer predisposition syndrome (CPS) diagnostics, we aimed to assess the diagnostic yield of extensive germline analysis compared with clinical selection-based genetic testing among all children with cancer.
Methods
In this prospective diagnostic study, all children (aged 0–19 years) with newly diagnosed neoplasms treated in the Netherlands national centre, the Princess Máxima Center for Pediatric Oncology (Utrecht, Netherlands), between June 1, 2020, and July 31, 2022, were offered two approaches to identify CPSs. In a phenotype-driven approach, paediatric oncologists used the McGill Interactive Pediatric OncoGenetic Guidelines tool to select children for referral to a clinical geneticist, and for genetic testing. In a phenotype-agnostic approach, CPS gene panel sequencing (143 genes) was offered to all children. In children declining the research CPS gene panel, 49 CPS genes were still analysed as part of routine diagnostics by the pathologist. Children with a causative CPS identified before neoplasm diagnosis were excluded. The primary objective was to compare the number and type of patients diagnosed with a CPS between the two approaches.
Findings
1052 children were eligible for this study, of whom 733 (70%) completed both the phenotype-driven approach and received phenotype-agnostic CPS gene panel sequencing (143 genes n=600; 49 genes n=133). In 53 children, a CPS was identified: 14 (26%) were diagnosed by the phenotype-driven approach only, 22 (42%) by CPS gene sequencing only, and 17 (32%) by both approaches. In 27 (51%) of the 53 children, the identified CPS was considered causative for the child's neoplasm. Only one (4%) of the 27 causative CPSs was missed by the phenotype-driven approach and was identified solely by phenotype-agnostic CPS gene sequencing. In 26 (49%) children, a CPS with uncertain causality was identified, including 14 adult-onset CPSs. The CPSs with uncertain causality were mainly detected by the phenotype-agnostic approach (21 [81%] of 26).
Interpretation
Phenotype-driven genetic testing and phenotype-agnostic CPS gene panel sequencing were complementary. The phenotype-driven approach identified the most causative CPSs. CPS gene panel sequencing identified additional CPSs, many of those with uncertain causality, but some with clinical utility. We advise clinical evaluation for CPSs in all children with neoplasms. Phenotype-agnostic testing of all CPS genes is preferably conducted only in research settings and should be paired with counseling.
期刊介绍:
The Lancet Child & Adolescent Health, an independent journal with a global perspective and strong clinical focus, presents influential original research, authoritative reviews, and insightful opinion pieces to promote the health of children from fetal development through young adulthood.
This journal invite submissions that will directly impact clinical practice or child health across the disciplines of general paediatrics, adolescent medicine, or child development, and across all paediatric subspecialties including (but not limited to) allergy and immunology, cardiology, critical care, endocrinology, fetal and neonatal medicine, gastroenterology, haematology, hepatology and nutrition, infectious diseases, neurology, oncology, psychiatry, respiratory medicine, and surgery.
Content includes articles, reviews, viewpoints, clinical pictures, comments, and correspondence, along with series and commissions aimed at driving positive change in clinical practice and health policy in child and adolescent health.