Thomas Wesarg, Antje Aschendorff, Regina Baumgaertel, Julia Böttcher, Liesbeth De Coninck, Ingeborg Dhooge, Ann Dierckx, Thomas Klenzner, Philipp Schörg, Georg Sprinzl, Freya Swinnen, Nicolas Verhaert, Annelies Vermeiren, Simone Volpert, Andrzej Zarowsk, Arne Ernst
{"title":"Cochlear Implantation in Single-Sided Deafness and Asymmetric Hearing Loss: 12 Months Follow-up Results of a European Multicenter Evaluation.","authors":"Thomas Wesarg, Antje Aschendorff, Regina Baumgaertel, Julia Böttcher, Liesbeth De Coninck, Ingeborg Dhooge, Ann Dierckx, Thomas Klenzner, Philipp Schörg, Georg Sprinzl, Freya Swinnen, Nicolas Verhaert, Annelies Vermeiren, Simone Volpert, Andrzej Zarowsk, Arne Ernst","doi":"10.5152/iao.2024.231457","DOIUrl":null,"url":null,"abstract":"<p><p>People with single-sided deafness (SSD) or asymmetric hearing loss (AHL) have particular difficulty understanding speech in noisy listening situations and in sound localization. The objective of this multicenter study is to evaluate the effect of a cochlear implant (CI) in adults with single-sided deafness (SSD) or asymmetric hearing loss (AHL), particularly regarding sound localization and speech intelligibility with additional interest in electric-acoustic pitch matching. A prospective longitudinal study at 7 European tertiary referral centers was conducted including 19 SSD and 16 AHL subjects undergoing cochlear implantation. Sound localization accuracy was investigated in terms of root mean square error and signed bias before and after implantation. Speech recognition in quiet and speech reception thresholds in noise for several spatial configurations were assessed preoperatively and at several post-activation time points. Pitch perception with CI was tracked using pitch matching. Data up to 12 months post activation were collected. In both SSD and AHL subjects, CI significantly improved sound localization for sound sources on the implant side, and thus overall sound localization. Speech recognition in quiet with the implant ear improved significantly. In noise, a significant head shadow effect was found for SSD subjects only. However, the evaluation of AHL subjects was limited by the small sample size. No uniform development of pitch perception with the implant ear was observed. The benefits shown in this study confirm and expand the existing body of evidence for the effectiveness of CI in SSD and AHL. Particularly, improved localization was shown to result from increased localization accuracy on the implant side.</p>","PeriodicalId":94238,"journal":{"name":"The journal of international advanced otology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11363187/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The journal of international advanced otology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5152/iao.2024.231457","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
People with single-sided deafness (SSD) or asymmetric hearing loss (AHL) have particular difficulty understanding speech in noisy listening situations and in sound localization. The objective of this multicenter study is to evaluate the effect of a cochlear implant (CI) in adults with single-sided deafness (SSD) or asymmetric hearing loss (AHL), particularly regarding sound localization and speech intelligibility with additional interest in electric-acoustic pitch matching. A prospective longitudinal study at 7 European tertiary referral centers was conducted including 19 SSD and 16 AHL subjects undergoing cochlear implantation. Sound localization accuracy was investigated in terms of root mean square error and signed bias before and after implantation. Speech recognition in quiet and speech reception thresholds in noise for several spatial configurations were assessed preoperatively and at several post-activation time points. Pitch perception with CI was tracked using pitch matching. Data up to 12 months post activation were collected. In both SSD and AHL subjects, CI significantly improved sound localization for sound sources on the implant side, and thus overall sound localization. Speech recognition in quiet with the implant ear improved significantly. In noise, a significant head shadow effect was found for SSD subjects only. However, the evaluation of AHL subjects was limited by the small sample size. No uniform development of pitch perception with the implant ear was observed. The benefits shown in this study confirm and expand the existing body of evidence for the effectiveness of CI in SSD and AHL. Particularly, improved localization was shown to result from increased localization accuracy on the implant side.