RRAM-Based Spiking Neural Network with Target-Modulated Spike-Timing-Dependent Plasticity.

Kalkidan Deme Muleta, Bai-Sun Kong
{"title":"RRAM-Based Spiking Neural Network with Target-Modulated Spike-Timing-Dependent Plasticity.","authors":"Kalkidan Deme Muleta, Bai-Sun Kong","doi":"10.1109/TBCAS.2024.3446177","DOIUrl":null,"url":null,"abstract":"<p><p>The spiking neural network (SNN) training with spike timing-dependent plasticity (STDP) for image classification usually requires a lot of neurons to extract representative features and(or) needs an external classifier. Conventional bio-inspired learning methods do not cover all possible learning opportunities, resulting in limited performance. We propose a new bio-plausible learning rule, target-modulated STDP (TSTDP), for higher learning efficiency and accuracy. We also propose an SNN architecture trainable with TSTDP using temporally encoded spikes to obtain higher accuracy and improved area efficiency without using an external classifier. Using the MNIST dataset, we have shown that the proposed design achieves an accuracy of 92%, which is up to 7% improvement compared to conventional networks of similar sizes. For providing similar accuracy, up to 75% smaller network size has been shown on top of demonstrating stronger resilience to process variations. Benchmarking on the CIFAR-10 and neuromorphic DVS gesture datasets show an accuracy improvement of up to 12.4% and 3.6%, respectively.</p>","PeriodicalId":94031,"journal":{"name":"IEEE transactions on biomedical circuits and systems","volume":"PP ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on biomedical circuits and systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TBCAS.2024.3446177","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The spiking neural network (SNN) training with spike timing-dependent plasticity (STDP) for image classification usually requires a lot of neurons to extract representative features and(or) needs an external classifier. Conventional bio-inspired learning methods do not cover all possible learning opportunities, resulting in limited performance. We propose a new bio-plausible learning rule, target-modulated STDP (TSTDP), for higher learning efficiency and accuracy. We also propose an SNN architecture trainable with TSTDP using temporally encoded spikes to obtain higher accuracy and improved area efficiency without using an external classifier. Using the MNIST dataset, we have shown that the proposed design achieves an accuracy of 92%, which is up to 7% improvement compared to conventional networks of similar sizes. For providing similar accuracy, up to 75% smaller network size has been shown on top of demonstrating stronger resilience to process variations. Benchmarking on the CIFAR-10 and neuromorphic DVS gesture datasets show an accuracy improvement of up to 12.4% and 3.6%, respectively.

基于 RRAM 的尖峰神经网络,具有目标调制的尖峰计时可塑性。
利用尖峰时序可塑性(STDP)训练用于图像分类的尖峰神经网络(SNN)通常需要大量神经元来提取代表性特征,并且(或)需要外部分类器。传统的生物启发学习方法无法涵盖所有可能的学习机会,导致性能有限。为了提高学习效率和准确性,我们提出了一种新的生物仿真学习规则--目标调制 STDP(TSTDP)。我们还提出了一种可使用 TSTDP 进行训练的 SNN 架构,利用时间编码的尖峰来获得更高的准确率,并在不使用外部分类器的情况下提高面积效率。通过使用 MNIST 数据集,我们发现所提出的设计达到了 92% 的准确率,与类似规模的传统网络相比提高了 7%。在提供类似准确率的同时,网络规模也缩小了 75%,而且对流程变化的适应能力更强。在 CIFAR-10 和神经形态 DVS 手势数据集上进行的基准测试表明,准确率分别提高了 12.4% 和 3.6%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信