{"title":"Pyridazine Derivatives: Molecular Docking, ADMET Prediction, and Synthesis for Antihypertensive Activity.","authors":"Gagandeep Kaur, Ankur Thakur, Lovish Sharma, Nidhi Rani","doi":"10.2174/0118715257316272240807075752","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>The drug discovery and development domain has witnessed remarkable advancements due to the integration of computational methods, particularly Computer-Aided Drug Design (CADD). Discovering and creating new drugs involves structural modifications to enhance their effectiveness and physical attributes. This frequently includes employing semisynthetic techniques to investigate structure-activity relationships thoroughly. Noticeable progress in molecular biology, computational chemistry, combinatorial chemistry, and highthroughput screening is steering transformative changes in the pharmaceutical industry.</p><p><strong>Background: </strong>High blood pressure or hypertension, a significant health issue, elevates the chances of heart, kidney, and brain complications, among other health concerns. It's a leading cause of untimely mortality globally. Therefore, it is important to search for new antihypertensive compounds that have fewer side effects and higher therapeutic activity.</p><p><strong>Methods: </strong>Following molecular docking of the pyridazine derivatives, compounds were subjected to In-silico ADMET analysis. Subsequently, a low molecular weight compound was synthesized. Among the synthesized compounds characterization procedures include TLC, FT-IR, 1HNMR, and LC-MS techniques.</p><p><strong>Result: </strong>Compound 8 exhibited the most favorable molecular docking results with alpha A1 and beta 1 adrenergic receptors. Compounds 3, 5, and 6 fulfilled the essential ADMET criteria. Subsequently, Compounds 3, 4, and 5 underwent additional synthesis and characterization procedures, including TLC, FT-IR, 1H-NMR, and LC-MS techniques.</p><p><strong>Conclusion: </strong>Similar behavior was observed in compounds 6, 8, 10, and 11, all violating Pfizer's 3/75 rules in terms of TPAS. Hydrazinolysis of these b-benzoyl propionic acids produced pyridazine, which was utilized in synthesizing pyridazine derivatives. TLC, FT-IR, 1HNMR, and LCMS have characterized the compounds.</p>","PeriodicalId":93924,"journal":{"name":"Cardiovascular & hematological agents in medicinal chemistry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cardiovascular & hematological agents in medicinal chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/0118715257316272240807075752","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: The drug discovery and development domain has witnessed remarkable advancements due to the integration of computational methods, particularly Computer-Aided Drug Design (CADD). Discovering and creating new drugs involves structural modifications to enhance their effectiveness and physical attributes. This frequently includes employing semisynthetic techniques to investigate structure-activity relationships thoroughly. Noticeable progress in molecular biology, computational chemistry, combinatorial chemistry, and highthroughput screening is steering transformative changes in the pharmaceutical industry.
Background: High blood pressure or hypertension, a significant health issue, elevates the chances of heart, kidney, and brain complications, among other health concerns. It's a leading cause of untimely mortality globally. Therefore, it is important to search for new antihypertensive compounds that have fewer side effects and higher therapeutic activity.
Methods: Following molecular docking of the pyridazine derivatives, compounds were subjected to In-silico ADMET analysis. Subsequently, a low molecular weight compound was synthesized. Among the synthesized compounds characterization procedures include TLC, FT-IR, 1HNMR, and LC-MS techniques.
Result: Compound 8 exhibited the most favorable molecular docking results with alpha A1 and beta 1 adrenergic receptors. Compounds 3, 5, and 6 fulfilled the essential ADMET criteria. Subsequently, Compounds 3, 4, and 5 underwent additional synthesis and characterization procedures, including TLC, FT-IR, 1H-NMR, and LC-MS techniques.
Conclusion: Similar behavior was observed in compounds 6, 8, 10, and 11, all violating Pfizer's 3/75 rules in terms of TPAS. Hydrazinolysis of these b-benzoyl propionic acids produced pyridazine, which was utilized in synthesizing pyridazine derivatives. TLC, FT-IR, 1HNMR, and LCMS have characterized the compounds.