Understanding the neurobiology of social behavior through exploring brain-wide dynamics of neural activity

IF 7.5 1区 医学 Q1 BEHAVIORAL SCIENCES
{"title":"Understanding the neurobiology of social behavior through exploring brain-wide dynamics of neural activity","authors":"","doi":"10.1016/j.neubiorev.2024.105856","DOIUrl":null,"url":null,"abstract":"<div><p>Social behavior is highly complex and adaptable. It can be divided into multiple temporal stages: detection, approach, and consummatory behavior. Each stage can be further divided into several cognitive and behavioral processes, such as perceiving social cues, evaluating the social and non-social contexts, and recognizing the internal/emotional state of others. Recent studies have identified numerous brain-wide circuits implicated in social behavior and suggested the existence of partially overlapping functional brain networks underlying various types of social and non-social behavior. However, understanding the brain-wide dynamics underlying social behavior remains challenging, and several brain-scale dynamics (macro-, meso-, and micro-scale levels) need to be integrated. Here, we suggest leveraging new tools and concepts to explore social brain networks and integrate those different levels. These include studying the expression of immediate-early genes throughout the entire brain to impartially define the structure of the neuronal networks involved in a given social behavior. Then, network dynamics could be investigated using electrode arrays or multi-channel fiber photometry. Finally, tools like high-density silicon probes and miniscopes can probe neural activity in specific areas and across neuronal populations at the single-cell level.</p></div>","PeriodicalId":56105,"journal":{"name":"Neuroscience and Biobehavioral Reviews","volume":null,"pages":null},"PeriodicalIF":7.5000,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroscience and Biobehavioral Reviews","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0149763424003257","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Social behavior is highly complex and adaptable. It can be divided into multiple temporal stages: detection, approach, and consummatory behavior. Each stage can be further divided into several cognitive and behavioral processes, such as perceiving social cues, evaluating the social and non-social contexts, and recognizing the internal/emotional state of others. Recent studies have identified numerous brain-wide circuits implicated in social behavior and suggested the existence of partially overlapping functional brain networks underlying various types of social and non-social behavior. However, understanding the brain-wide dynamics underlying social behavior remains challenging, and several brain-scale dynamics (macro-, meso-, and micro-scale levels) need to be integrated. Here, we suggest leveraging new tools and concepts to explore social brain networks and integrate those different levels. These include studying the expression of immediate-early genes throughout the entire brain to impartially define the structure of the neuronal networks involved in a given social behavior. Then, network dynamics could be investigated using electrode arrays or multi-channel fiber photometry. Finally, tools like high-density silicon probes and miniscopes can probe neural activity in specific areas and across neuronal populations at the single-cell level.

通过探索全脑神经活动动态,了解社会行为的神经生物学。
社交行为非常复杂,适应性很强。它可分为多个时间阶段:发现、接近和消费行为。每个阶段又可进一步划分为若干认知和行为过程,如感知社交线索、评估社交和非社交环境以及识别他人的内部/情绪状态。最近的研究发现了许多与社会行为有关的全脑回路,并提出存在部分重叠的功能性大脑网络,这些网络是各种社会和非社会行为的基础。然而,理解社会行为背后的全脑动态仍具有挑战性,需要整合多个脑尺度动态(宏观、中观和微观尺度水平)。在此,我们建议利用新的工具和概念来探索社会性大脑网络,并整合这些不同的层次。其中包括研究整个大脑中即时早期基因的表达,以公正地确定特定社会行为所涉及的神经元网络的结构。然后,可以利用电极阵列或多通道光纤光度计研究网络动态。最后,高密度硅探针和微型显微镜等工具可以在单细胞水平上探测特定区域和整个神经元群的神经活动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
14.20
自引率
3.70%
发文量
466
审稿时长
6 months
期刊介绍: The official journal of the International Behavioral Neuroscience Society publishes original and significant review articles that explore the intersection between neuroscience and the study of psychological processes and behavior. The journal also welcomes articles that primarily focus on psychological processes and behavior, as long as they have relevance to one or more areas of neuroscience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信