{"title":"Firing rate models for gamma oscillations in I-I and E-I networks.","authors":"Yiqing Lu, John Rinzel","doi":"10.1007/s10827-024-00877-z","DOIUrl":null,"url":null,"abstract":"<p><p>Firing rate models for describing the mean-field activities of neuronal ensembles can be used effectively to study network function and dynamics, including synchronization and rhythmicity of excitatory-inhibitory populations. However, traditional Wilson-Cowan-like models, even when extended to include an explicit dynamic synaptic activation variable, are found unable to capture some dynamics such as Interneuronal Network Gamma oscillations (ING). Use of an explicit delay is helpful in simulations at the expense of complicating mathematical analysis. We resolve this issue by introducing a dynamic variable, u, that acts as an effective delay in the negative feedback loop between firing rate (r) and synaptic gating of inhibition (s). In effect, u endows synaptic activation with second order dynamics. With linear stability analysis, numerical branch-tracking and simulations, we show that our r-u-s rate model captures some key qualitative features of spiking network models for ING. We also propose an alternative formulation, a v-u-s model, in which mean membrane potential v satisfies an averaged current-balance equation. Furthermore, we extend the framework to E-I networks. With our six-variable v-u-s model, we demonstrate in firing rate models the transition from Pyramidal-Interneuronal Network Gamma (PING) to ING by increasing the external drive to the inhibitory population without adjusting synaptic weights. Having PING and ING available in a single network, without invoking synaptic blockers, is plausible and natural for explaining the emergence and transition of two different types of gamma oscillations.</p>","PeriodicalId":54857,"journal":{"name":"Journal of Computational Neuroscience","volume":" ","pages":"247-266"},"PeriodicalIF":1.5000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10827-024-00877-z","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/19 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Firing rate models for describing the mean-field activities of neuronal ensembles can be used effectively to study network function and dynamics, including synchronization and rhythmicity of excitatory-inhibitory populations. However, traditional Wilson-Cowan-like models, even when extended to include an explicit dynamic synaptic activation variable, are found unable to capture some dynamics such as Interneuronal Network Gamma oscillations (ING). Use of an explicit delay is helpful in simulations at the expense of complicating mathematical analysis. We resolve this issue by introducing a dynamic variable, u, that acts as an effective delay in the negative feedback loop between firing rate (r) and synaptic gating of inhibition (s). In effect, u endows synaptic activation with second order dynamics. With linear stability analysis, numerical branch-tracking and simulations, we show that our r-u-s rate model captures some key qualitative features of spiking network models for ING. We also propose an alternative formulation, a v-u-s model, in which mean membrane potential v satisfies an averaged current-balance equation. Furthermore, we extend the framework to E-I networks. With our six-variable v-u-s model, we demonstrate in firing rate models the transition from Pyramidal-Interneuronal Network Gamma (PING) to ING by increasing the external drive to the inhibitory population without adjusting synaptic weights. Having PING and ING available in a single network, without invoking synaptic blockers, is plausible and natural for explaining the emergence and transition of two different types of gamma oscillations.
期刊介绍:
The Journal of Computational Neuroscience provides a forum for papers that fit the interface between computational and experimental work in the neurosciences. The Journal of Computational Neuroscience publishes full length original papers, rapid communications and review articles describing theoretical and experimental work relevant to computations in the brain and nervous system. Papers that combine theoretical and experimental work are especially encouraged. Primarily theoretical papers should deal with issues of obvious relevance to biological nervous systems. Experimental papers should have implications for the computational function of the nervous system, and may report results using any of a variety of approaches including anatomy, electrophysiology, biophysics, imaging, and molecular biology. Papers investigating the physiological mechanisms underlying pathologies of the nervous system, or papers that report novel technologies of interest to researchers in computational neuroscience, including advances in neural data analysis methods yielding insights into the function of the nervous system, are also welcomed (in this case, methodological papers should include an application of the new method, exemplifying the insights that it yields).It is anticipated that all levels of analysis from cognitive to cellular will be represented in the Journal of Computational Neuroscience.