{"title":"Insights into a functional synthetic plant genome","authors":"Fei Du, Junbiao Dai, Yuling Jiao","doi":"10.1111/nph.19979","DOIUrl":null,"url":null,"abstract":"<p>Synthetic genomics involves the design, assembly, and transfer of artificially synthesized DNA fragments into target hosts to replace the native genome and construct viable forms of life. With advances in DNA synthesis and assembly techniques, the application of synthetic genomics in viruses, bacteria, and yeast has improved our knowledge of genome organization and function. Multicellular eukaryotic organisms are characterized by larger genomes, more complex epigenetic regulation, and widespread transposable elements, making genome synthesis challenging. Recently, the first synthetic multicellular eukaryotic organism was generated in the model plant <i>Physcomitrium patens</i> with a partially synthetic chromosome arm. Here, we introduce the design and assembly principles of moss genome synthesis. We also discuss the remaining technical barriers in the application of synthetic genomics in seed plants.</p>","PeriodicalId":214,"journal":{"name":"New Phytologist","volume":null,"pages":null},"PeriodicalIF":8.3000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/nph.19979","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Phytologist","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/nph.19979","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Synthetic genomics involves the design, assembly, and transfer of artificially synthesized DNA fragments into target hosts to replace the native genome and construct viable forms of life. With advances in DNA synthesis and assembly techniques, the application of synthetic genomics in viruses, bacteria, and yeast has improved our knowledge of genome organization and function. Multicellular eukaryotic organisms are characterized by larger genomes, more complex epigenetic regulation, and widespread transposable elements, making genome synthesis challenging. Recently, the first synthetic multicellular eukaryotic organism was generated in the model plant Physcomitrium patens with a partially synthetic chromosome arm. Here, we introduce the design and assembly principles of moss genome synthesis. We also discuss the remaining technical barriers in the application of synthetic genomics in seed plants.
合成基因组学包括设计、组装和将人工合成的 DNA 片段转移到目标宿主体内,以取代原生基因组并构建有生命力的生命形式。随着 DNA 合成和组装技术的进步,合成基因组学在病毒、细菌和酵母中的应用提高了我们对基因组组织和功能的认识。多细胞真核生物的特点是基因组更大、表观遗传调控更复杂、转座元件广泛存在,因此基因组合成具有挑战性。最近,第一个人工合成的多细胞真核生物在模式植物 Physcomitrium patens 中产生,它具有部分人工合成的染色体臂。在此,我们将介绍苔藓基因组合成的设计和组装原理。我们还讨论了合成基因组学在种子植物中应用的其余技术障碍。
期刊介绍:
New Phytologist is an international electronic journal published 24 times a year. It is owned by the New Phytologist Foundation, a non-profit-making charitable organization dedicated to promoting plant science. The journal publishes excellent, novel, rigorous, and timely research and scholarship in plant science and its applications. The articles cover topics in five sections: Physiology & Development, Environment, Interaction, Evolution, and Transformative Plant Biotechnology. These sections encompass intracellular processes, global environmental change, and encourage cross-disciplinary approaches. The journal recognizes the use of techniques from molecular and cell biology, functional genomics, modeling, and system-based approaches in plant science. Abstracting and Indexing Information for New Phytologist includes Academic Search, AgBiotech News & Information, Agroforestry Abstracts, Biochemistry & Biophysics Citation Index, Botanical Pesticides, CAB Abstracts®, Environment Index, Global Health, and Plant Breeding Abstracts, and others.