{"title":"A dendrite is a dendrite is a dendrite? Dendritic signal integration beyond the \"antenna\" model.","authors":"Moritz Stingl, Andreas Draguhn, Martin Both","doi":"10.1007/s00424-024-03004-0","DOIUrl":null,"url":null,"abstract":"<p><p>Neurons in central nervous systems receive multiple synaptic inputs and transform them into a largely standardized output to their target cells-the action potential. A simplified model posits that synaptic signals are integrated by linear summation and passive propagation towards the axon initial segment, where the threshold for spike generation is either crossed or not. However, multiple lines of research during past decades have shown that signal integration in individual neurons is much more complex, with important functional consequences at the cellular, network, and behavioral-cognitive level. The interplay between concomitant excitatory and inhibitory postsynaptic potentials depends strongly on the relative timing and localization of the respective synapses. In addition, dendrites contain multiple voltage-dependent conductances, which allow scaling of postsynaptic potentials, non-linear input processing, and compartmentalization of signals. Together, these features enable a rich variety of single-neuron computations, including non-linear operations and synaptic plasticity. Hence, we have to revise over-simplified messages from textbooks and use simplified computational models like integrate-and-fire neurons with some caution. This concept article summarizes the most important mechanisms of dendritic integration and highlights some recent developments in the field.</p>","PeriodicalId":19954,"journal":{"name":"Pflugers Archiv : European journal of physiology","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pflugers Archiv : European journal of physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00424-024-03004-0","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Neurons in central nervous systems receive multiple synaptic inputs and transform them into a largely standardized output to their target cells-the action potential. A simplified model posits that synaptic signals are integrated by linear summation and passive propagation towards the axon initial segment, where the threshold for spike generation is either crossed or not. However, multiple lines of research during past decades have shown that signal integration in individual neurons is much more complex, with important functional consequences at the cellular, network, and behavioral-cognitive level. The interplay between concomitant excitatory and inhibitory postsynaptic potentials depends strongly on the relative timing and localization of the respective synapses. In addition, dendrites contain multiple voltage-dependent conductances, which allow scaling of postsynaptic potentials, non-linear input processing, and compartmentalization of signals. Together, these features enable a rich variety of single-neuron computations, including non-linear operations and synaptic plasticity. Hence, we have to revise over-simplified messages from textbooks and use simplified computational models like integrate-and-fire neurons with some caution. This concept article summarizes the most important mechanisms of dendritic integration and highlights some recent developments in the field.
期刊介绍:
Pflügers Archiv European Journal of Physiology publishes those results of original research that are seen as advancing the physiological sciences, especially those providing mechanistic insights into physiological functions at the molecular and cellular level, and clearly conveying a physiological message. Submissions are encouraged that deal with the evaluation of molecular and cellular mechanisms of disease, ideally resulting in translational research. Purely descriptive papers covering applied physiology or clinical papers will be excluded. Papers on methodological topics will be considered if they contribute to the development of novel tools for further investigation of (patho)physiological mechanisms.