A biomimetic branching signal-passing tile assembly model with dynamic growth and disassembly.

IF 3.7 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Journal of The Royal Society Interface Pub Date : 2024-08-01 Epub Date: 2024-08-21 DOI:10.1098/rsif.2023.0755
Daniel Fu, John Reif
{"title":"A biomimetic branching signal-passing tile assembly model with dynamic growth and disassembly.","authors":"Daniel Fu, John Reif","doi":"10.1098/rsif.2023.0755","DOIUrl":null,"url":null,"abstract":"<p><p>Natural biological branching processes can form tree-like structures at all scales and, moreover, can perform various functions to achieve specific goals; these include receiving stimuli, performing two-way communication along their branches, and dynamically reforming (extending or retracting branches). They underlie many biological systems with considerable diversity, frequency, and geometric complexity; these include networks of neurons, organ tissue, mycorrhizal fungal networks, plant growth, foraging networks, etc. This paper presents a biomimetic DNA tile assembly model (Y-STAM) to implement dynamic branching processes. The Y-STAM is a relatively compact mathematical model providing a design space where complex, biomimetic branch-like growth and behaviour can emerge from the appropriate parametrization of the model. We also introduce a class of augmented models (Y-STAM<sup>+</sup>) that provide time- and space-dependent modulations of tile glue strengths, which enable further diverse behaviours that are not possible in the Y-STAM; these additional behaviours include refinement of network assemblies, obstacle avoidance, and programmable growth patterns. We perform and discuss extensive simulations of the Y-STAM and the Y-STAM<sup>+</sup>. We envision that these models could be applied at the mesoscale and the molecular scale to dynamically assemble branching DNA nanostructures and offer insights into complex biological self-assembly processes.</p>","PeriodicalId":17488,"journal":{"name":"Journal of The Royal Society Interface","volume":"21 217","pages":"20230755"},"PeriodicalIF":3.7000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11335017/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Royal Society Interface","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsif.2023.0755","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/21 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Natural biological branching processes can form tree-like structures at all scales and, moreover, can perform various functions to achieve specific goals; these include receiving stimuli, performing two-way communication along their branches, and dynamically reforming (extending or retracting branches). They underlie many biological systems with considerable diversity, frequency, and geometric complexity; these include networks of neurons, organ tissue, mycorrhizal fungal networks, plant growth, foraging networks, etc. This paper presents a biomimetic DNA tile assembly model (Y-STAM) to implement dynamic branching processes. The Y-STAM is a relatively compact mathematical model providing a design space where complex, biomimetic branch-like growth and behaviour can emerge from the appropriate parametrization of the model. We also introduce a class of augmented models (Y-STAM+) that provide time- and space-dependent modulations of tile glue strengths, which enable further diverse behaviours that are not possible in the Y-STAM; these additional behaviours include refinement of network assemblies, obstacle avoidance, and programmable growth patterns. We perform and discuss extensive simulations of the Y-STAM and the Y-STAM+. We envision that these models could be applied at the mesoscale and the molecular scale to dynamically assemble branching DNA nanostructures and offer insights into complex biological self-assembly processes.

具有动态生长和分解功能的仿生分支信号传递瓦片组装模型。
自然界的生物分支过程可以在各种尺度上形成树状结构,而且可以执行各种功能以实现特定目标;这些功能包括接收刺激、沿分支进行双向交流以及动态重组(延伸或缩回分支)。它们是许多生物系统的基础,具有相当高的多样性、频率和几何复杂性,其中包括神经元网络、器官组织、菌根真菌网络、植物生长、觅食网络等。本文提出了一种生物仿真 DNA 瓦片组装模型(Y-STAM)来实现动态分支过程。Y-STAM 是一个相对紧凑的数学模型,它提供了一个设计空间,通过对模型进行适当的参数化,可以产生复杂的仿生物分支生长和行为。我们还引入了一类增强模型(Y-STAM+),可提供与时间和空间相关的瓦片胶合强度调节,从而进一步实现 Y-STAM 中不可能实现的多样化行为;这些额外行为包括网络组装的细化、障碍规避和可编程生长模式。我们对 Y-STAM 和 Y-STAM+ 进行了大量模拟并展开了讨论。我们设想这些模型可以应用于中尺度和分子尺度,以动态组装分支 DNA 纳米结构,并为复杂的生物自组装过程提供见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of The Royal Society Interface
Journal of The Royal Society Interface 综合性期刊-综合性期刊
CiteScore
7.10
自引率
2.60%
发文量
234
审稿时长
2.5 months
期刊介绍: J. R. Soc. Interface welcomes articles of high quality research at the interface of the physical and life sciences. It provides a high-quality forum to publish rapidly and interact across this boundary in two main ways: J. R. Soc. Interface publishes research applying chemistry, engineering, materials science, mathematics and physics to the biological and medical sciences; it also highlights discoveries in the life sciences of relevance to the physical sciences. Both sides of the interface are considered equally and it is one of the only journals to cover this exciting new territory. J. R. Soc. Interface welcomes contributions on a diverse range of topics, including but not limited to; biocomplexity, bioengineering, bioinformatics, biomaterials, biomechanics, bionanoscience, biophysics, chemical biology, computer science (as applied to the life sciences), medical physics, synthetic biology, systems biology, theoretical biology and tissue engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信