Yangsean Choi, Ji Su Ko, Ji Eun Park, Geunu Jeong, Minkook Seo, Yohan Jun, Shohei Fujita, Berkin Bilgic
{"title":"Beyond the Conventional Structural MRI: Clinical Application of Deep Learning Image Reconstruction and Synthetic MRI of the Brain.","authors":"Yangsean Choi, Ji Su Ko, Ji Eun Park, Geunu Jeong, Minkook Seo, Yohan Jun, Shohei Fujita, Berkin Bilgic","doi":"10.1097/RLI.0000000000001114","DOIUrl":null,"url":null,"abstract":"<p><strong>Abstract: </strong>Recent technological advancements have revolutionized routine brain magnetic resonance imaging (MRI) sequences, offering enhanced diagnostic capabilities in intracranial disease evaluation. This review explores 2 pivotal breakthrough areas: deep learning reconstruction (DLR) and quantitative MRI techniques beyond conventional structural imaging. DLR using deep neural networks facilitates accelerated imaging with improved signal-to-noise ratio and spatial resolution, enhancing image quality with short scan times. DLR focuses on supervised learning applied to clinical implementation and applications. Quantitative MRI techniques, exemplified by 2D multidynamic multiecho, 3D quantification using interleaved Look-Locker acquisition sequences with T2 preparation pulses, and magnetic resonance fingerprinting, enable precise calculation of brain-tissue parameters and further advance diagnostic accuracy and efficiency. Potential DLR instabilities and quantification and bias limitations will be discussed. This review underscores the synergistic potential of DLR and quantitative MRI, offering prospects for improved brain imaging beyond conventional methods.</p>","PeriodicalId":14486,"journal":{"name":"Investigative Radiology","volume":" ","pages":""},"PeriodicalIF":7.0000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Investigative Radiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/RLI.0000000000001114","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract: Recent technological advancements have revolutionized routine brain magnetic resonance imaging (MRI) sequences, offering enhanced diagnostic capabilities in intracranial disease evaluation. This review explores 2 pivotal breakthrough areas: deep learning reconstruction (DLR) and quantitative MRI techniques beyond conventional structural imaging. DLR using deep neural networks facilitates accelerated imaging with improved signal-to-noise ratio and spatial resolution, enhancing image quality with short scan times. DLR focuses on supervised learning applied to clinical implementation and applications. Quantitative MRI techniques, exemplified by 2D multidynamic multiecho, 3D quantification using interleaved Look-Locker acquisition sequences with T2 preparation pulses, and magnetic resonance fingerprinting, enable precise calculation of brain-tissue parameters and further advance diagnostic accuracy and efficiency. Potential DLR instabilities and quantification and bias limitations will be discussed. This review underscores the synergistic potential of DLR and quantitative MRI, offering prospects for improved brain imaging beyond conventional methods.
期刊介绍:
Investigative Radiology publishes original, peer-reviewed reports on clinical and laboratory investigations in diagnostic imaging, the diagnostic use of radioactive isotopes, computed tomography, positron emission tomography, magnetic resonance imaging, ultrasound, digital subtraction angiography, and related modalities. Emphasis is on early and timely publication. Primarily research-oriented, the journal also includes a wide variety of features of interest to clinical radiologists.