Yixiang Jiang, Min Jiang, Rui Cai, Xiaolu Shi, Qinghua Hu, Biao Kan
{"title":"Rapid and specific differentiation of Salmonella enterica serotypes typhi and Paratyphi by multicolor melting curve analysis.","authors":"Yixiang Jiang, Min Jiang, Rui Cai, Xiaolu Shi, Qinghua Hu, Biao Kan","doi":"10.1186/s13099-024-00636-6","DOIUrl":null,"url":null,"abstract":"<p><p>Rapid and accurate identification of Salmonella enterica serotypes Typhi and Paratyphi (A, B and C), the causal agents of enteric fever, is critical for timely treatment, case management and evaluation of health policies in low and middle-income countries where the disease still remains a serious public health problem. The present study describes the development of a multiplex assay (EFMAtyping) for simultaneous identification of pathogens causing typhoid and paratyphoid fever in a single reaction by the MeltArray approach, which could be finished within 2.5 h. Seven specific genes were chosen for differentiation of typhoidal and nontyphoidal Salmonella. All gene targets were able to be detected by the EFMAtyping assay, with expected Tm values and without cross-reactivity to other relevant Salmonella serovars. The limit of detection (LOD) for all gene targets was 50 copies per reaction. The LOD reached 10<sup>2</sup>-10<sup>3</sup> CFU/ml for each pathogen in simulated clinical samples. The largest standard deviation value for mean Tm was below 0.5 °C. This newly developed EFMAtyping assay was further evaluated by testing 551 clinical Salmonella isolates, corroborated in parallel by the traditional Salmonella identification workflow, and serotype prediction was enabled by whole-genome sequencing. Compared to the traditional method, our results exhibited 100% of specificity and greater than 96% of sensitivity with a kappa correlation ranging from 0.96 to 1.00. Thus, the EFMAtyping assay provides a rapid, high throughput, and promising tool for public health laboratories to monitor typhoid and paratyphoid fever.</p>","PeriodicalId":12833,"journal":{"name":"Gut Pathogens","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11331607/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gut Pathogens","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13099-024-00636-6","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GASTROENTEROLOGY & HEPATOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Rapid and accurate identification of Salmonella enterica serotypes Typhi and Paratyphi (A, B and C), the causal agents of enteric fever, is critical for timely treatment, case management and evaluation of health policies in low and middle-income countries where the disease still remains a serious public health problem. The present study describes the development of a multiplex assay (EFMAtyping) for simultaneous identification of pathogens causing typhoid and paratyphoid fever in a single reaction by the MeltArray approach, which could be finished within 2.5 h. Seven specific genes were chosen for differentiation of typhoidal and nontyphoidal Salmonella. All gene targets were able to be detected by the EFMAtyping assay, with expected Tm values and without cross-reactivity to other relevant Salmonella serovars. The limit of detection (LOD) for all gene targets was 50 copies per reaction. The LOD reached 102-103 CFU/ml for each pathogen in simulated clinical samples. The largest standard deviation value for mean Tm was below 0.5 °C. This newly developed EFMAtyping assay was further evaluated by testing 551 clinical Salmonella isolates, corroborated in parallel by the traditional Salmonella identification workflow, and serotype prediction was enabled by whole-genome sequencing. Compared to the traditional method, our results exhibited 100% of specificity and greater than 96% of sensitivity with a kappa correlation ranging from 0.96 to 1.00. Thus, the EFMAtyping assay provides a rapid, high throughput, and promising tool for public health laboratories to monitor typhoid and paratyphoid fever.
Gut PathogensGASTROENTEROLOGY & HEPATOLOGY-MICROBIOLOGY
CiteScore
7.70
自引率
2.40%
发文量
43
期刊介绍:
Gut Pathogens is a fast publishing, inclusive and prominent international journal which recognizes the need for a publishing platform uniquely tailored to reflect the full breadth of research in the biology and medicine of pathogens, commensals and functional microbiota of the gut. The journal publishes basic, clinical and cutting-edge research on all aspects of the above mentioned organisms including probiotic bacteria and yeasts and their products. The scope also covers the related ecology, molecular genetics, physiology and epidemiology of these microbes. The journal actively invites timely reports on the novel aspects of genomics, metagenomics, microbiota profiling and systems biology.
Gut Pathogens will also consider, at the discretion of the editors, descriptive studies identifying a new genome sequence of a gut microbe or a series of related microbes (such as those obtained from new hosts, niches, settings, outbreaks and epidemics) and those obtained from single or multiple hosts at one or different time points (chronological evolution).