{"title":"Selecting appropriate excipients for paediatric dosage form − Paediatric excipients risk assessment (PERA) framework – Part 1","authors":"","doi":"10.1016/j.ejpb.2024.114458","DOIUrl":null,"url":null,"abstract":"<div><p>Excipients are often the major component of the formulation that critically affect the dosage form, manufacturing process, product performance, stability and safety. They exert different roles and functions in a dosage form. Selecting excipients with appropriate safety and tolerability is a major hurdle in paediatric formulation development. The suitability of a particular excipient will be dependent on the context of its use with regard to the paediatric age range, acute versus chronic use, and clinical risk–benefit of the disease, active and excipient. Scientists are encouraged to apply the principle of risk–benefit to assess the suitability of excipients to the specific paediatric population. Indicative list of parameters that should be taken into consideration and hierarchy of information sources when assessing the excipients risks is provided by regulatory agencies. However, the approach to be taken and details of how the risk evaluation should be undertaken are lacking. There is a need for a systematic approach to selection of excipients and assessment of the risk of excipient exposure. The Paediatric Excipients Risk Assessment (PERA) framework developed and proposed in this paper provides a structured, systematic decision-making framework via customizable tools and processes that can help to improve the transparency and communications on the selection and justification of use of excipients in a paediatric formulation.</p></div>","PeriodicalId":12024,"journal":{"name":"European Journal of Pharmaceutics and Biopharmaceutics","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Pharmaceutics and Biopharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0939641124002844","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Excipients are often the major component of the formulation that critically affect the dosage form, manufacturing process, product performance, stability and safety. They exert different roles and functions in a dosage form. Selecting excipients with appropriate safety and tolerability is a major hurdle in paediatric formulation development. The suitability of a particular excipient will be dependent on the context of its use with regard to the paediatric age range, acute versus chronic use, and clinical risk–benefit of the disease, active and excipient. Scientists are encouraged to apply the principle of risk–benefit to assess the suitability of excipients to the specific paediatric population. Indicative list of parameters that should be taken into consideration and hierarchy of information sources when assessing the excipients risks is provided by regulatory agencies. However, the approach to be taken and details of how the risk evaluation should be undertaken are lacking. There is a need for a systematic approach to selection of excipients and assessment of the risk of excipient exposure. The Paediatric Excipients Risk Assessment (PERA) framework developed and proposed in this paper provides a structured, systematic decision-making framework via customizable tools and processes that can help to improve the transparency and communications on the selection and justification of use of excipients in a paediatric formulation.
期刊介绍:
The European Journal of Pharmaceutics and Biopharmaceutics provides a medium for the publication of novel, innovative and hypothesis-driven research from the areas of Pharmaceutics and Biopharmaceutics.
Topics covered include for example:
Design and development of drug delivery systems for pharmaceuticals and biopharmaceuticals (small molecules, proteins, nucleic acids)
Aspects of manufacturing process design
Biomedical aspects of drug product design
Strategies and formulations for controlled drug transport across biological barriers
Physicochemical aspects of drug product development
Novel excipients for drug product design
Drug delivery and controlled release systems for systemic and local applications
Nanomaterials for therapeutic and diagnostic purposes
Advanced therapy medicinal products
Medical devices supporting a distinct pharmacological effect.