Zhengsong Zhou, Xin Li, Hongbo Ji, Xuanhan Xu, Zongqi Chang, Keda Wu, Yangyang Song, Mingkun Kao, Hongjun Chen, Dongsheng Wu, Tao Zhang
{"title":"Application of improved Unet network in the recognition and segmentation of lung CT images in patients with pneumoconiosis.","authors":"Zhengsong Zhou, Xin Li, Hongbo Ji, Xuanhan Xu, Zongqi Chang, Keda Wu, Yangyang Song, Mingkun Kao, Hongjun Chen, Dongsheng Wu, Tao Zhang","doi":"10.1186/s12880-024-01377-3","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Pneumoconiosis has a significant impact on the quality of patient survival. This study aims to evaluate the performance and application value of improved Unet network technology in the recognition and segmentation of lesion areas of lung CT images in patients with pneumoconiosis.</p><p><strong>Methods: </strong>A total of 1212 lung CT images of patients with pneumoconiosis were retrospectively included. The improved Unet network was used to identify and segment the CT image regions of the patients' lungs, and the image data of the granular regions of the lungs were processed by the watershed and region growing algorithms. After random sorting, 848 data were selected into the training set and 364 data into the validation set. The experimental dataset underwent data augmentation and were used for model training and validation to evaluate segmentation performance. The segmentation results were compared with FCN-8s, Unet network (Base), Unet (Squeeze-and-Excitation, SE + Rectified Linear Unit, ReLU), and Unet + + networks.</p><p><strong>Results: </strong>In the segmentation of lung CT granular region with the improved Unet network, the four evaluation indexes of Dice similarity coefficient, positive prediction value (PPV), sensitivity coefficient (SC) and mean intersection over union (MIoU) reached 0.848, 0.884, 0.895 and 0.885, respectively, increasing by 7.6%, 13.3%, 3.9% and 6.4%, respectively, compared with those of Unet network (Base), and increasing by 187.5%, 249.4%, 131.9% and 51.0%, respectively, compared with those of FCN-8s, and increasing by 14.0%, 31.2%, 4.7% and 9.7%, respectively, compared with those of Unet network (SE + ReLU), while the segmentation performance was also not inferior to that of the Unet + + network.</p><p><strong>Conclusions: </strong>The improved Unet network proposed shows good performance in the recognition and segmentation of abnormal regions in lung CT images in patients with pneumoconiosis, showing potential application value for assisting clinical decision-making.</p>","PeriodicalId":9020,"journal":{"name":"BMC Medical Imaging","volume":"24 1","pages":"220"},"PeriodicalIF":2.9000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11331615/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Medical Imaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12880-024-01377-3","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Pneumoconiosis has a significant impact on the quality of patient survival. This study aims to evaluate the performance and application value of improved Unet network technology in the recognition and segmentation of lesion areas of lung CT images in patients with pneumoconiosis.
Methods: A total of 1212 lung CT images of patients with pneumoconiosis were retrospectively included. The improved Unet network was used to identify and segment the CT image regions of the patients' lungs, and the image data of the granular regions of the lungs were processed by the watershed and region growing algorithms. After random sorting, 848 data were selected into the training set and 364 data into the validation set. The experimental dataset underwent data augmentation and were used for model training and validation to evaluate segmentation performance. The segmentation results were compared with FCN-8s, Unet network (Base), Unet (Squeeze-and-Excitation, SE + Rectified Linear Unit, ReLU), and Unet + + networks.
Results: In the segmentation of lung CT granular region with the improved Unet network, the four evaluation indexes of Dice similarity coefficient, positive prediction value (PPV), sensitivity coefficient (SC) and mean intersection over union (MIoU) reached 0.848, 0.884, 0.895 and 0.885, respectively, increasing by 7.6%, 13.3%, 3.9% and 6.4%, respectively, compared with those of Unet network (Base), and increasing by 187.5%, 249.4%, 131.9% and 51.0%, respectively, compared with those of FCN-8s, and increasing by 14.0%, 31.2%, 4.7% and 9.7%, respectively, compared with those of Unet network (SE + ReLU), while the segmentation performance was also not inferior to that of the Unet + + network.
Conclusions: The improved Unet network proposed shows good performance in the recognition and segmentation of abnormal regions in lung CT images in patients with pneumoconiosis, showing potential application value for assisting clinical decision-making.
期刊介绍:
BMC Medical Imaging is an open access journal publishing original peer-reviewed research articles in the development, evaluation, and use of imaging techniques and image processing tools to diagnose and manage disease.