{"title":"Clinical Value of lncRNA CASC19 in Myocardial Infarction and its Role in Myocardial Infarction-Induced Cardiomyocyte Apoptosis.","authors":"Zhou Lan, Pengye Liu, Peng Tuo, Yuguang Gao, Ling Zhao, Qingyu Huang","doi":"10.1177/00033197241273348","DOIUrl":null,"url":null,"abstract":"<p><p>To explore the effect of long non-coding RNA cancer susceptibility 19 (lncRNA CASC19) on the activity, apoptosis, and oxidative stress response of cardiomyocytes, so as to assess the clinical relevance and molecular mechanism of CASC19 in myocardial infarction (MI). CASC19 level was determined by using real-time quantitative polymerase chain reaction (RT-qPCR). MI model was constructed using hypoxia induction, and rat cardiomyocytes H9c2 were divided into control group, MI group, MI small interference negative control (MI-si-NC) group, MI-si-CASC19 group, MI-si-CASC19+microRNA-NC (miR-NC) group, and MI-si-CASC19+miR-218-5p inhibitor group. Tetramethylazolium salt colorimetric method and flow cytometry were used to evaluate cell activity and apoptotic capacity. Cellular oxidative stress was evaluated using malondialdehyde and superoxide dismutase kits. The relationship between CASC19 and miR-218-5p was confirmed by using dual-luciferase activity assay. CASC19 levels were enhanced in MI patients and hypoxia-induced cardiomyocytes. Downregulating CASC19 promoted the proliferation, while suppressed apoptosis and oxidative stress in the MI cell model. Moreover, low expression of miR-218-5p reversed the promotion of proliferation and inhibition of apoptosis and oxidative stress in MI cell models by silencing CASC19. Briefly, CASC19 may serve as a diagnostic marker for MI by sponging miR-218-5p to inhibit apoptosis and oxidative stress in cardiomyocytes and promote cell survival.</p>","PeriodicalId":8264,"journal":{"name":"Angiology","volume":" ","pages":"33197241273348"},"PeriodicalIF":2.6000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/00033197241273348","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PERIPHERAL VASCULAR DISEASE","Score":null,"Total":0}
引用次数: 0
Abstract
To explore the effect of long non-coding RNA cancer susceptibility 19 (lncRNA CASC19) on the activity, apoptosis, and oxidative stress response of cardiomyocytes, so as to assess the clinical relevance and molecular mechanism of CASC19 in myocardial infarction (MI). CASC19 level was determined by using real-time quantitative polymerase chain reaction (RT-qPCR). MI model was constructed using hypoxia induction, and rat cardiomyocytes H9c2 were divided into control group, MI group, MI small interference negative control (MI-si-NC) group, MI-si-CASC19 group, MI-si-CASC19+microRNA-NC (miR-NC) group, and MI-si-CASC19+miR-218-5p inhibitor group. Tetramethylazolium salt colorimetric method and flow cytometry were used to evaluate cell activity and apoptotic capacity. Cellular oxidative stress was evaluated using malondialdehyde and superoxide dismutase kits. The relationship between CASC19 and miR-218-5p was confirmed by using dual-luciferase activity assay. CASC19 levels were enhanced in MI patients and hypoxia-induced cardiomyocytes. Downregulating CASC19 promoted the proliferation, while suppressed apoptosis and oxidative stress in the MI cell model. Moreover, low expression of miR-218-5p reversed the promotion of proliferation and inhibition of apoptosis and oxidative stress in MI cell models by silencing CASC19. Briefly, CASC19 may serve as a diagnostic marker for MI by sponging miR-218-5p to inhibit apoptosis and oxidative stress in cardiomyocytes and promote cell survival.
期刊介绍:
A presentation of original, peer-reviewed original articles, review and case reports relative to all phases of all vascular diseases, Angiology (ANG) offers more than a typical cardiology journal. With approximately 1000 pages per year covering diagnostic methods, therapeutic approaches, and clinical and laboratory research, ANG is among the most informative publications in the field of peripheral vascular and cardiovascular diseases. This journal is a member of the Committee on Publication Ethics (COPE). Average time from submission to first decision: 13 days