Comparative Removal of Poliovirus, Rotavirus SA11 and MS2 Coliphage by Point-of-Use Devices used to Treat Drinking Water and Water Disinfectants: A Review
Samendra P. Sherchan, Charles P. Gerba, Sherif Abd-Elmaksoud
{"title":"Comparative Removal of Poliovirus, Rotavirus SA11 and MS2 Coliphage by Point-of-Use Devices used to Treat Drinking Water and Water Disinfectants: A Review","authors":"Samendra P. Sherchan, Charles P. Gerba, Sherif Abd-Elmaksoud","doi":"10.1007/s12560-024-09609-z","DOIUrl":null,"url":null,"abstract":"<div><p>Test protocols have been developed to test water treatment devices/systems for use for treating drinking water that are used at the individual and home level to ensure the removal of waterborne viruses. Current test procedures call for the use of poliovirus type 1 and/or rotavirus SA11. Recently we suggested that selected coliphages could be used as surrogates for poliovirus for testing of point-of-use (POU) water treatment devices, however, rotavirus was not used in those studies. The purpose of this review was to compare studies of POU devices which were tested with poliovirus type 1, simian rotavirus SA11 and coliphage MS2 to determine if the behavior of rotavirus SA11 was significantly different. In addition, an attempt was made to compare the relative resistance of these viruses by various disinfectants used to treat drinking water. In all cases SA11 was removed to an equal or greater degree than poliovirus. SA11 was found to be less resistant to halogens, although one study found it to be more resistance to chloramines than poliovirus and MS2. Based on this review, use of coliphages for testing POU devices appear justified. Additionally, data on chloramines for these viruses would be useful to determine if rotavirus is more resistant than poliovirus and MS2.</p></div>","PeriodicalId":563,"journal":{"name":"Food and Environmental Virology","volume":"16 4","pages":"433 - 437"},"PeriodicalIF":4.1000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food and Environmental Virology","FirstCategoryId":"97","ListUrlMain":"https://link.springer.com/article/10.1007/s12560-024-09609-z","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Test protocols have been developed to test water treatment devices/systems for use for treating drinking water that are used at the individual and home level to ensure the removal of waterborne viruses. Current test procedures call for the use of poliovirus type 1 and/or rotavirus SA11. Recently we suggested that selected coliphages could be used as surrogates for poliovirus for testing of point-of-use (POU) water treatment devices, however, rotavirus was not used in those studies. The purpose of this review was to compare studies of POU devices which were tested with poliovirus type 1, simian rotavirus SA11 and coliphage MS2 to determine if the behavior of rotavirus SA11 was significantly different. In addition, an attempt was made to compare the relative resistance of these viruses by various disinfectants used to treat drinking water. In all cases SA11 was removed to an equal or greater degree than poliovirus. SA11 was found to be less resistant to halogens, although one study found it to be more resistance to chloramines than poliovirus and MS2. Based on this review, use of coliphages for testing POU devices appear justified. Additionally, data on chloramines for these viruses would be useful to determine if rotavirus is more resistant than poliovirus and MS2.
期刊介绍:
Food and Environmental Virology publishes original articles, notes and review articles on any aspect relating to the transmission of pathogenic viruses via the environment (water, air, soil etc.) and foods. This includes epidemiological studies, identification of novel or emerging pathogens, methods of analysis or characterisation, studies on survival and elimination, and development of procedural controls for industrial processes, e.g. HACCP plans. The journal will cover all aspects of this important area, and encompass studies on any human, animal, and plant pathogenic virus which is capable of transmission via the environment or food.